UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI – 110 002

PROFORMA FOR SUBMISSION OF INFORMATION AT THE TIME OF SENDING THE FINAL REPORT OF THE WORK DONE ON THE PROJECT

- 1. Title of the Project: Targeted identification of novel stress responsive gene copies in Brassica arisen through gene duplication.
- 2. Name And Address Of The Principal Investigator: Dr. MALAY DAS, Presidency University, 86/1 College Street, Kolkata-700073
- 3. Name And Address Of The Institution: Presidency University, 86/1 College Street, Kolkata-700073
- 4. Ugc Approval Letter No. And Date: 43-68/2014(SR), 17/08/2015
- 5. Date Of Implementation: 16/10/2015
- 6. Tenure Of The Project: 3 years w.e.f. 01/07/2015 to 30/06/2018
- 7. Total Grant Allocated :: Rs 13,80,000
- 8. Total Grant Received: Rs 12,75,041
- 9. Final expenditure : 12,74,997.00
- 10. Title of the project: <u>Targeted identification of novel stress responsive gene copies in Brassica arisen through</u> gene duplication
- 11. Objectives of the project: Enclosed (Attachment 2)
- 12. Whether objectives were achieved: Enclosed (Attachment 2)
- 13. Achievements from the project: Enclosed (Attachment 3)
- 14. Summary of the findings: Enclosed (Attachment 4)
- 15. Contribution to the society: Enclosed (Attachment 3)
- 16. Whether any ph.d. enrolled/produced out of the project: No
- 17. No. Of publications out of the project: Attachment 5

(PRINCIPAL INVESTIGATOR)

Dr. Malay Das Asst. Professor, Dept. of Life Sciences Presidency University, Kolkata (CO-INVESTIGATOR)

(REGISTRAR/PRINCIPAL)

(Seal)

Registrar Presidency University

Ko

Kegistrat Presidency University Kolkata

TITLE OF THE PROJECT: Targeted identification of novel stress responsive gene copies in Brassica arisen through gene duplication

Principal Investigator: Dr. Malay Das, Presidency University, Kolkata

Objectives:

Objective 1: To study the consequence of whole genome duplication and triplication on the diversification of *Brassica rapa/B. napus* stress response genes.

Objective 2: To evaluate the role of dosage effect on the stress tolerance of amphidiploids *B. napus*.

Whether objectives were achieved or not:

Broadly speaking the major objective of this project have either been obtained or close to obtaining. The initial phase of the project observed hurdles with reference to seed germination and viability of *B. napus* germplasms. Therefore, additional experiments had to be conducted employing 100 *B. juncea* germplasms and assaying their salt stress sensitivity in the laboratory as well as field growth conditions to identify tolerant and susceptible genotypes to test the validity of the Bioinformatics predictions. Currently, real-time RTqPCR experiments are being undertaken and expected to be completed along with final data analysis by next few months.

Detailed Progress Report

1. Bioinformatics identification of duplicated gene copies in *Brassica rapa*, *B. juncea* and *Thellungiella halophila* (=*E. salsugineum*)

Thirteen important stress responsive Arabidopsis thaliana genes were selected to check their copy numbers in B. rapa, B. and Τ. halophila genomes. **BLAST-P** analysis was performed in Phytozome v10.2 juncea (https://phytozome.jgi.doe.gov/pz/portal.html) using A. thaliana proteins as query to check their copy numbers in B. rapa and T. halophile genomes. For B. juncea BLAST-p analysis was performed in BRAD genome database (http://brassicadb.org/brad/index.php). Cut-off values used for this analysis were identity $\geq 60\%$ and e value $\leq e^{-5}$, average length coverage of target gene against query gene >50%. Out of the thirteen genes used as query, one-to-many situations were observed for all the genes except *NIG1* (Table 1). Therefore *NIG1* was excluded for any further analyses.

2. Comparison of gene model of B. rapa, B. juncea and T. halophila homologs to that of A. thaliana

Gene models of the duplicated gene copies were predicted using tools avalable in Phytozome and BRAD genome database and were compared to *A. thaliana* to predict whether they could point-out any major loss or gain of exon regions that may affect the overall functionality of the proteins (Table 1). For example, if there is an occurrence of non- functionalization, then premature insertion of stop codon would have been arisen. Similarly, in case of a neo-fuctionalization an addition or loss of an important functional domain is expected to occur. One such situation has been observed in case of *TH.HKT1.3* and *BJ.HKT1.4* where exon loss had led to loss of three conserved domains- M1_D, F2_D and M2_D (Figure 1).

Table 1. Important *A. thaliana* osmotic stress response genes and identification of their multiplicated homologs in *B. rapa* and *T. halophila*.

Gene	Gene name	Identifier name	CDS length in
			amino acid
	AT.HKT1	AT4G10310	506
	BR.HKT1.1	BR02G27530	506
HKII (HIGH-AFFINITY	BR.HKT1.2	BR09G17490	506
K ⁺ TRANSPORTER	BR.HKT1.3	BR09G17470	503
1)	BR.HKT1.4	BR03G25550	506
	BJ.HKT1.1	BjuA007955	504
	BJ.HKT1.2	BjuB019475	493
	BJ.HKT1.3	BjuA034177	493
	BJ.HKT1.4	ВјиА011236	445
	TH.HKT1.1	Thhalv10028595m	505
	TH.HKT1.2	Thhalv10028594m	506
	TH.HKT1.3	Thhalv10028767m	354
	AT.SIZ1	AT5G60410	873
	BR.SIZ1.1	BR10G13020	873
SIZ1`	BR.SIZ1.2	BR02G11620	873
	BR.SIZ1.3	BR06G18930	870
	BJ.SIZ1.1	BjuA038745	839
	BJ.SIZ1.2	BjuB034136	835
	BJ.SIZ1.3	BjuA006543	845
	BJ.SIZ1.4	BjuA022986	852
	BJ.SIZ1.5	BjuB018234	1374
	TH.SIZ1	Thhalv10012623m	885
	TH.SIZ2	Thhalv10002397m	869
	TH.SIZ1.3	Thhalv10012660m	859
	AT.HRD	AT2G36450	184
HARDY	BR.HRD1.1	BR04G21830	179
	BR.HRD1.2	BR03G18020	187
	BJ.HRD1.1	BjuA042562	183
	BJ.HRD1.2	BjuB016312	183
	THHRD.1	Thhalv10017537m	190
	ATOST1	AT4G33950	362
ATOST1	BROST1.1	BR01G04190	362
(OPEN STOMATA 1)	BROST1.2	BR03G53840	362
	BROST1.3	BR07G11570	357
	BJOST1.1	BjuB020865	362
	BJOST1.2	BjuA011773	362
	BJOST1.3	BjuB038334	319
	BJOST1.4	BjuA010530	361
	THOST1.1	Thhalv10004469m	361

	THOST1.2	Thhalv10025907m	287
	THOST1.3	Thhalv10004481m	287
	ATCBL10	AT4G33000	256
ATCBL10	BRCBL10.1	BR08G14810	246
(CALCINEURIN B-	BRCBL10.2	BR03G53140	258
LIKE PROTEIN 10)	BRCBL10.3	BR01G04930	211
	BJCBL10.1	BjuA003297	195
	BJCBL10.2	BjuA016230	189
	THCBL10.1	Thhalv10026019m	259
	THCBL10.2	Thhalv10028908m	251
	ATAPX2	AT5G63980	407
APX2	BRAPX2.1	BR06G22010	349
	BRAPX2.2	BR09G06670	358
	BJAPX2.1	BjuB020593	406
	BJAPX2.2	BjuB039601	406
	THAPX2.1	Thhalv10004312m	412
	ATSAT32	AT1G27760	441
ATSAT32	BRSAT32.1	BR09G18370	442
(SALT-	BRSAT32.2	BR08G22160	421
TOLERANCE 32)	BJSAT32.1	BjuA034971	442
	THSAT32.1	Thhalv10007663m	438
	THSAT32.2	Thhalv10009506m	408
	THSAT32.3	Thhalv10001793m	429
	THSAT32.4	Thhalv10017670m	416
	THSAT32.5	Thhalv10017549m	418
	ATLSM5	AT5G48870	88
ATLSM5	BRLSM5.1	BR02G35090	89
	BRLSM5.2	BR09G04750	89
	BJLSM5.1	BjuA008359	89
	BJLSM5.2	BjuB007714	53
	THLSM5.1	Thhalv10005202m	88
439ABI5	ATABI5	AT2G36270	442
(ABA INSENSITIVE	BRABI5.1	BR05G08750	438
5)	BRABI5.2	BR04G21670	396
	BJABI5.1	BjuA018972	442
	BJABI5.2	BjuB041699	439
	BJABI5.3	ВјиО002525	439
	THABI5.1	Thhalv10016668m	439
	THABI5.2	Thhalv10016671m	439
ABA1	ATABA1	AT5G67030	667
(ABA DEFICIENT	BRABA1.1	BR07G11430	664
1)	BRABA1.2	BR09G08410	654
	BJABA1.1	BjuB020853	723
		DI 101150	

	THABA1.1	Thhalv10003769m	667
ABI1 (ABA INSENSITIVE 1)	ATABI1	AT4G26080	434
	BRABI1.1	BR01G15890	425
	BRABI1.2	BR08G17450	422
	BRABI1.3	BR03G48970	413
	BRABI1.4	BR10G10210	422
	BJABI1.1	BjuA004393	415
	BJABI1.2	BjuA013512	411
	THABI1.1	Thhalv10025224m	439
	THABI1.2	Thhalv10013611m	430
ATMYB15 (MYB DOMAIN PROTEIN 15)	ATMYB15	AT3G23250	285
	BRMYB15.1	BR03G37520	286
	BRMYB15.2	BR07G05310	285
	BRMYB15.3	BR01G27980	281
	BRMYB15.1	BjuA012756	286
	BRMYB15.2	BjuA025680	279
	THMYB15.1	Thhalv10022110m	285

Table 2. Morphological and biochemical parameters studied to assess the sensitivity of 100 *Brassica juncea* germplasms towards salt stress using field growth conditions.

Sr.no	Parameters	Tissue stages used	Procedures used
1	Fresh shoot biomass	Shoot	Fresh weight of the harvested above ground shoot tissues
2	Shoot dry biomass	Shoot	Harvested above ground shoot tissues were oven-dried at 70°C overnight prior to obtaining their weight.
3	Shoot length	Shoot	The length of 21 days old seedlings
4	chlorophyll SPAD value	Leaf tissue	Chlorophyll SPAD measured using 21 days old seedlings
5	Number of leaves	Leaf tissue	counted manually
6	Total number of seeds per silique valve	Flowering stage	counted manually
7	Total number of silique per plant	Flowering stage	counted manually
8	Silique length	Flowering stage	counted manually
9	Number of branches	Flowering stage	counted manually
10	Proline	Vegetative leaf tissue	As per the procedures of Bates et al(1973)

			1 ml of sap
			was diluted with deionized water to a volume of 5ml. After
	Estimation of		calibrating the LAQUAtwin Potassium Ion meter according to
11	Na^+ and K^+	Leaf tissue	manufacturer's instructions, 1ml of the diluted sap were
	content		placed into the sensor of LAQUAtwin Potassium Ion meter to
			determine the K^+ concentration. The Na ⁺ estimation was also
			done using similar procedures.

BjHKT1.1	R <mark>KRSGFFVSQLSFLVICIFLV</mark> SIVEEEQLRRDPLNFN <mark>VLNITLEVISAYGNVGFT</mark> TGYSC
BrHKT1.1	R <mark>KRSGFFVSQLSFLVICIFLV</mark> SIVEEEQLRRDPLNFN <mark>VLNITLEVISAYGNVGFT</mark> TGYSC
BjHKT1.2	VKKDGTYVSQLAFLVICVLLISITESQKIRRDPLNFS <mark>ILNITLEVISAYGNVGFS</mark> TGYSC
ВјНКТ1.3	VKKNGVYVSQLAFLVICVLLISITESQKIRRDPLNFS <mark>ILNITLEVISAYGNVGFS</mark> TGYSC
BrHKT1.2	V <mark>KKNGVYVSQLAFLVICVLLI</mark> SITESQKIRRDPLNFS <mark>ILNITLEVISAYGNVGFS</mark> TGYSC
ThHKT1.1	R <mark>KKSGLFVSQLSFLVVCIVLI</mark> SISEREKLRRDPLNFN <mark>VLNITLEVISAYGNVGFT</mark> TGYSC
ATHKT1	V <mark>KKSGLIVSQLSFLTICIFLI</mark> SITERQNLQRDPINFN <mark>VLNITLEVISAYGNVGFT</mark> TGYSC
BrHKT1.3	R <mark>KKTGFFVSQLSFLAISVFFI</mark> SITESQNLRRDPLNFN <mark>ILNITLEVISAFGNVGFT</mark> TGYSC
ThHKT1.2	G <mark>KKSGFFVSQLSFLAICVFFI</mark> SITESQNLRRDPLNFN <mark>VLNITLEVISAFGNVGFT</mark> TGYSC
ThHKT1.3	
	M1p
	FD
BjHKT1.4	ERRLNVSDGGCEDAGYGFAGRWR <mark>QATPRRS</mark>
BrHKT1.4	ERRLNVSDGGCEDAGYGFAGRWS <mark>SSGKFILIIVMFYGRLKQFTAKSGR</mark> AWILYPSSS*
BjHKT1.1	KRRLDARDGVCKDASYGFVGRWS <mark>PTGKIILILVMLYGRFKHFTSKSGR</mark> AWILYP
BrHKT1.1	KRRLDASDGVCKDASYGFVGRWS <mark>PTGKIILILVMLYGRFKHFTSKSGR</mark> AWILYPSSF*
BjHKT1.2	ERRLDVKNGSCKDAGYGFAGRWS <mark>PVGKIILTIVMFYGKFKQFTAKSGR</mark> KWILYP
BjHKT1.3	KRRLDVRDGSCKDAGYGFAGRWS <mark>PVGKIILIIVMFYGKFKQFTAKSGR</mark> TWILYP
BrHKT1.2	KRRLDVRDGSCKDAGYGFAGRWS <mark>PVGKIILIIVMFYGKFKQFTAKSGR</mark> TWILYPSSS*
ThHKT1.1	KRRLNVSDGGCEDASYGFVGRWS <mark>PAGKVILILVMFYGRFKHFTPKSGR</mark> AWILYPSSF*
ATHKT1	ERRVDISDGGCKDASYGFAGRWS <mark>PMGKFVLIIVMFYGRFKQFTAKSGR</mark> AWILYPSSS-
BrHKT1.3	KRRLDINNGSCKDTSYGFVGRWS <mark>PNGKFILIIVMLYGRFKQFTAKSGR</mark> PWILYP*
ThHKT1.2	ERRLDISNGGCKNEGYGFAGRWS <mark>PTGKFVLIIVMFYGRFKQFTAKSGR</mark> AWILYPSSS*
ThHKT1.3	
	M2 _D

Figure 1. Loss of conserved domains (M1_D, F_D and M2_D) in *TH.HKT3* and *BjHKT1.4 homolog*.

3. Cis-elements analyses for the duplicated copies of B. rapa, B. juncea and T. halophila

Cis-element prediction was done using the Plant care database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). Approximately 1000 bp upstream region from ATG was downloaded from Phytozome and BRAD genome databases and were used as query sequences in the Plant Care database. Cis-elements which had proven functional role specifically towards abiotic stresses were selected. Major cis-elements selected for this analyses were abscisic acid responsive element (*ABRE*), heat shock elements (*HSE*), TC rich repeat which is involved in defense and stress response and MYB binding site (MBS), which is a drought inducible element. The total number of such cis elements present in the promoter region of a homolog was recorded to conclude on the enrichment of cis elements among various closely related hpmologs. For example in TH.HKT1.2, a total of 11 cis elements were found, while in case of *AT.HKT1* it was only 3. This gain of cis elements may

provide enhanced stress tolerance to *T. halophila*. However, further confirmation of this hypothesis can be done using qRT-PCR analyses.

4. Stress sensitivity assay of *B. juncea* germplasms in the laboratory and field conditions

In order to evaluate the role of dosage effect, the amphidiploid plant proposed for this study was *B. napus*. However, multiple experimental hurdles such as asynchronous germination of seeds or no germination arose while working on *B. napus* germplasms. Therefore, as an alternative 100 *B. juncea* germplasms, which is also an amphidiploid *Brassica* was obtained from ICAR Central Soil Salinity Research Institute, Karnal and ICAR-Directorate of Rapeseed Mustard Research, Bharatpur. Many of these germplasms previously demonstrated contrasting phenotype with respect to their sensitivity to salt stress (Kumar et al., 2009). However, since stress sensitivity is always subjective to the local environmental conditions, it was imperative for us to perform an independent salt stress sensitivity assay both under laboratory as well as field settings.

In order to perform assay in the laboratory conditions, seeds were surface sterilized in 70% ethyl alcohol, stratification was done for two days and then placed on solid media for germination. Different treatments for both salinity and drought were used. For salinity assay, 75 mM and 150mM NaCl was supplemented with MS media, while for drought assays 100 mM and 200 mM mannitol was added to MS media. Approximately 20 seeds/plate were used for this assay. Data were obtained after 10 days of germination. Measurement of Root and Hypocotyl length was done using the IMAGE J software. The field assay was carried out during December 2017 to April 2018. The saline field was located in Gosaba (22.1652° N, 88.8079° E), while the control, non-saline field was located in Baruipur (22.3597° N, 88.4318° E). After 3 weeks of germination, vegetative tissues were collected to assay 11 vegetative parameters such as fresh and dry biomass, biochemical parameters such as proline, sodium and potassium content and reproductive parameters such as number of siliques per plant and total number of seeds were obtained (Table 2).

Tolerant genotypes predicted on the basis of one parameter did not overlap to that of the other predictions. For example B. juncea RH-781 was predicted as the most tolerant genotype based on the analyses on sodium and potassium content of shoot tissues, while it was B. juncea NC1-jhumka on the basis of proline content in shoots, B. juncea NPJ-200 for dry biomass of shoot tissues, B. juncea RW-46-6-3 for total number of seeds per plant and B. juncea Sitara- Srinagar on the basis of number of siliques per plant (Figure 2, Das Laha et al., 2018).

5. Stress experiment for tissue harvesting of *B. rapa and B. juncea* for assaying expression pattrens of the targeted gene copies

All the selected genotypes plants were grown hydroponically in plant growth room at 21° C temperature, 50-55% of humidity and 70-80 umolm⁻² sec⁻¹ light intensity (Das et al., 2016). Two to three weeks old plants were subjected to 100 mM and 150 mM NaCl as well as 200 mM mannitol treatments. Shoot and root tissues were harvested separately after 8h and 24h post treatments from both the treated as well as untreated plants. Three sets of biological replicates have been taken by pooling 5 plants each for one biological set.

6. Primer designing, total RNA extraction and real-time RT-qPCR analyses

Gene specific primers for all the twelve duplicated genes, have already been designed and synthesized. Primers were designed with the help of Primer 3 WEB (<u>http://bioinfo.ut.ee/primer3/</u>). PCR ability of these primers have already been done by amplifying them using genomic DNA as template. *ACTIN 2* and *GAPC* genes were selected as reference genes for *A. thaliana* and *T. halophila* (Das et al., 2016; Gong et al., 2005). *GAPDH* and *UBQ10* were selected as reference genes for *B.*

rapa (Qi et al., 2010). Isolation of total RNA and performing real-time RTqPCR analyses will be performed as per the procedure established in the laboratory (Das et al., 2016; Dutta et al., 2018).

Figure 2. Screening of *B. juncea* in laboratory conditions (A, B), Field conditions (C, D).

References

Bates LS, Waldren RP, Teare ID (1973) Rapid Determination of Free Proline for Water-Stress Studies. Plant and Soil 39:205-207.

Conn SJ, Hocking B, Dayod M, Xu B, Athman A, Henderson S, Aukett L, Conn V, Shearer MK, Fuentes S, et al (2013) Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods 9: 4

Das M, Reichman JR, Haberer G, Welzl G, Aceituno FF, Mader MT, Watrud LS, Pfleeger TG, Gutiérrez R, Schäffner AR and Olszyk D (2010) A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus. Plant Molecular Biology 72(4-5): 545-56.

Das M, Haberer G, Panda A, Das Laha S, Ghosh T C, Schäffner A R (2016) Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. Plant Physiol 171(4): 2343-2357.

Das Laha S, Naskar AJ, Sarkar T, Guha S, Mondal HA, Das M (2018) Field based stress phenotyping of crops and the future scopes of high throughput plant phenotyping to redefine research in this area (submitted).

Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M (2018) Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genomics 19: 190.

Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166(5):507-20.

Gong Q, Li P, Ma S, Rupassara, SI, Bohnert JH (2005) Salinity stress adaptation competence in the extremophile *Thellungiella halophila* in comparison with its relative *Arabidopsis thaliana*. The Plant Journal 44: 826–839.

Xi J, Yu S, Zhang F, Shen X, Zhao Y, Yu Y, Zhang D (2010) Reference Gene Selection for Real-Time Quantitative Polymerase Chain Reaction of mRNA Transcript Levels in Chinese Cabbage (*Brassica rapa* L. ssp. pekinensis). Plant Mol Biol Rep 28:597–604.

Malm Dar

Dr. Malay Das Asst. Professor, Dept. of Life Sciences Presidency University, Kolkata

Achievements from the project:

1. Man Power Development: One project fellow (Ms. Shayani Das Laha) was trained in this project, obtained knowledge in the field of bioinformatics and plant genomics and is currently pursuing PhD thesis studies.

2. Publications: Two research publications (one published and one submitted)

Das M, Haberer G, Panda A, Das Laha S, Ghosh T C, Schäffner A R (2016) Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. **Plant Physiology** 171(4): 2343-2357.

Das Laha S, Naskar AJ, Sarkar T, Guha S, Mondal HA, Das M (2018) Field based stress phenotyping of crops and the future scopes of high throughput plant phenotyping to redefine research in this area (Under review), Invited contribution to a book entitled "Intelligent Image Analysis for Plant Phenotyping" to be edited by A. Samal, and S. Das Choudhury, published by CRC Press/Taylor & Francis Group

3. Identification of salt stress tolerant germplasms: Comparison of the overall performance of 104 germplasms of *Brassica juncea* in the saline and non-saline soil growth conditions had identified *B. juncea* B-85 (Seeta), RW-351 (Bhagarathi) and CS 58 as the putatively tolerant germplasms.

4: Identification of a few novel allelic variants conferring putative tolerance to salt stress.

Contribution to the society:

Brassicaceae consists of the worlds most economically important crops and is of high importance for India. Identification of the putatively tolerant germplasms and Understanding the evolutionary fate of stress response genes in *Brassica juncea* could help us to identify novel genes that could potentially be utilized for genetic crop improvement in future

Malay Das

Dr. Malay Das Asst. Professor, Dept. of Life Sciences Presidency University, Kolkata

Summary of the findings

Abiotic stress severely affects agricultural crop productivity world-wide. Since our objective was to identify the effects of gene duplication in abiotic stress tolerance in Brassica, a reference tolerant Brassica genotype for assessment of stress tolerance mechanism was required . As Brassica. juncea is an economically important crop and is also know to contain various tolerant genotypes. Therefore, a cumulative study which included study in both laboratory and field settings was conducted on 104 Brassica juncea and their responses to salt stress was assessed using diverse morphological and biochemical parameters. The finding identifies the germplasms selected to show maximum tolerance for different parameters. For example B. junceaRH-781 showed highest tolerance for Sodium and potassium content of shoot tissues, B. junceaNC1-jhumka showed maximum tolerance for proline content in shoot tissues, B. juncea NPJ-200 for dry biomass of shoot tissues, B. juncea RW-46-6-3 for total number of seeds per plant ,B. junceaSitara- Srinagar showed best tolerance in case of number of siliques per plant. In the insilico experiments comparison of gene model of homologs of B. rapa, B. juncea and T.halophila to that of A. thaliana predicted out many major loss or gain of exon regions that may affect the overall functionality of the proteins. For example in case of TH.HKT1.3 and BJ.HKT1.4 exon loss had led to loss of three conserved domains- M1_D, F2_D and M2_D. Study of the major cis-elements responsive to abiotic stress (ABRE, HSE, MYB, MBS) also provides major cues which helped in the identification of important gene copy responsible for providing stress tolerance. For example in TH.HKT1.2 total of 11 cis elements were found in comparison with 3 in AT.HKT1. This gain of cis elements possible could provide stress tolerance to T. halophila.

Mulay Das

Dr. Malay Das Asst. Professor, Dept. of Life Sciences Presidency University, Kolkata

Number of publications

1. Das M, Haberer G, Panda A, Das Laha S, Ghosh T C, Schäffner A R (2016) Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. **Plant Physiology** 171(4): 2343-2357.

2. Das Laha S, Naskar AJ, Sarkar T, Guha S, Mondal HA, Das M (2018) Field based stress phenotyping of crops and the future scopes of high throughput plant phenotyping to redefine research in this area (Under review), Invited contribution to a book entitled "Intelligent Image Analysis for Plant Phenotyping" to be edited by A. Samal, and S. Das Choudhury, published by CRC Press/Taylor & Francis Group

Malay Das

Dr. Malay Das Asst. Professor, Dept. of Life Sciences Presidency University, Kolkala