Contents

Contents	Page No.
List of Abbreviations	i
List of Tables	ii-iii
List of Figures	iv-xvi
Chapter-1: Geochemical Appraisal of fluoride in Environment and	1-41
Its Existing Treatment Technologies	
1.1. Fluoride in Groundwater: An Environmental Threat	1-2
1.2.Fluoride contamination: Probable Sources and Contamination	2-9
Mechanism	
1.3.Distribution of Fluoride: An Appraisal	9-20
1.4.Fluoride Toxicity and Health Impacts	21-23
1.5. Existing Fluoride Removal Technologies: A critical Overview	23-37
1.5.1. Conventional Methods with Their Own Merits and Demerits	23-28
1.5.2. Adsorption as Cost Effective Environment Friendly Treatment	29-37
Technique	
1.6. Aims and Objectives of Present Work	37-38
1.7. Summary of the Present Research Work	38-41
Chapter-2: Experimental Methods and Procedures	42-76
2.1. Reagents and Apparatus	42
2.2.Preparation of Standard Solutions	42-43
2.2.1. Fluoride Solution	42
2.2.2. Preparation of Phosphate Solution	43
2.2.3. Preparation of Sulphate Solution	43
2.2.4. Preparation of bicarbonate solution	43

2.2.5. Preparation of chloride solution	43
2.3. Analytical Processes	44-45
2.3.1. Fluoride analysis	44
2.3.2. Hardness Estimation (Titrimetric method)	44
2.3.3. Total Dissolved Solid (TDS)	44
2.3.4. Estimation of pHzPC	45
2.4. Instrumental and Software Used	45
2.5. Synthesis of Proposed Adsorbents	46-49
2.5.1. Preparation of Ce (IV)-incorporated hydrous Fe (III) oxide named	46
as (CIHFO) HFO and HCO	
2.5.2. Surface modification of Ce (IV)-incorporated hydrous Fe (III)	47-48
oxide (CIHFO) with graphene oxide and named as GO-CIHFO	
2.5.2.1. Preparation of graphene oxide (GO)	47
2.5.2.2. Preparation of Graphene Oxide tweaked Ce(IV)-incorporated	48
hydrous Fe(III) oxide (GO-CIHFO)	
2.5.3. Synthesis of β -cyclodextrin modified Ce (IV)-incorporated	49
hydrous Fe (III) oxide (βC-CIHFO)	
2.6. Adsorbent Characterisation	49-56
2.6.1. Surface Morphology Study	49-52
2.6.1.1. Optical Microscope and Scanning Electron Microscope (SEM)	49-51
Study with EDX Analysis.	
2.6.1.2. Transmission Electron Microscope (TEM) with EDX Analysis	51
2.6.1.3. Atomic Force Microscope (AFM) Study	51-52
2.6.1.4. Surface Area Analysis	52-54
2.6.2. X-ray Powder Diffraction (XRD) Analysis	54

2.6.3. Thermogravimetric (TG)and Differential thermal Analysis (DTA)	54
2.6.4. Infrared (IR) Spectroscopy Study	54-56
2.6.5. Raman Spectroscopy Study	56
2.6.6. X-ray Photoelectron Spectroscopy (XPS) study	56
2.7. Experimental Design for Batch Study	57
2.7.1. Adsorption Kinetics Study	58
2.7.1.1. Adsorption Kinetics modelling	58-65
2.7.1.1.1. Pseudo First Order Kinetics Equation	59-60
2.7.1.1.2. Pseudo-Second Order Kinetics Equation	60-61
2.7.1.1.3. Mass Transfer	61-62
2.7.1.1.4. Diffusion Kinetics (Intra-particle Diffusion Model)	62-63
2.7.1.1.5. Elovich Model	63-64
2.7.1.1.6. Richenberg Model	64-65
2.7.2. Adsorption isotherm models	66-68
2.7.2.1. Langmuir Isotherm	66-67
2.7.2.2. Freundlich Isotherm	67
2.7.2.3. Dubinin - Radushkevich (D-R) isotherm	67-68
2.7.3. Thermodynamics Studies	68-69
2.7.4. Activation Energy	69-70
2.8. Fixed bed column adsorption models	70-71
2.8.1. Conventional mathematical modeling: Thomas model	70
2.8.2. Bed Depth Service Time (BDST) model	71
2.8.3. Statistical model	72-76
2.8.3.1. Artificial neural network (ANN) modeling	72-74
2.8.3.2.Response surface methodology (RSM)	74-76

Cha	pter-3: Synthesis, Characterisation and Application of Lab	77-205	
Bench Scale Prepared Chemically Modified Low–Cost Adsorbents			
for H	Removal of Fluoride from Groundwater by Batch Operation		
Tech	nology		
3.1.	Introduction	77-79	
3.2.	Characterisation of Lab Bench Scale Prepared CIHFO, GO-	79-120	
	CIHFO and βC-CIHFO		
3.3.	Batch Adsorption Study	121-125	
3.3.1.	Influence of Cerium Content in CIHFO on Fluoride Adsorption	121	
3.3.2.	Influence of Percentage of Graphene Oxide Content in CIHFO on	123-124	
	Fluoride Adsorption		
3.3.3.	Influence of Molar Concentration Variation of Beta Cyclodextrin	124-125	
	Solution for Synthesis of β C-CIHFO and Its Impact on Fluoride		
	Adsorption		
3.4.	Effect of Adsorbent dose	125-127	
3.5.	Effect of pH upon Fluoride Adsorption Capacity of CIHFO, GO-	128-132	
	CIHFO and βC-CIHFO		
3.6.	Effect of Contact Time on Adsorption Process and Kinetic	132-170	
	Modelling		
3.7.	Equilibrium Analysis	171-181	
3.8.	Thermodynamics Studies	182-185	
3.9.	Activation Energy	186-187	
3.10.	Effect of Co-occurring ions on Fluoride Adsorption	187-190	
3.11.	Desorption and Re-usability of Proposed Adsorbents	190-194	
3.12.	Removal of Fluoride from a Natural Groundwater Sample	194-196	

3.13. Proposed Mechanism of Fluoride Adsorption over CIHFO, GO-	197-202
CIHFO and βC-CIHFO	
3.13.1. Proposed Mechanism for CIHFO	197-198
3.13.2. Proposed Mechanism for GO-CIHFO	198-199,201
3.13.3. Proposed Mechanism for β C-CIHFO	199-200,202
3.14. Conclusion	203-205
Chapter-4: Continuous Fixed-Bed Column Study and Adsorption	206-251
Modelling to Evaluate Fluoride Removal performance of Cerium	
(IV)-incorporated Hydrous Iron(III) Oxide (CIHFO)	
nanoaggregates from Groundwater	
4.1. Introduction	206-207
4.2. Column Design for Adsorption Experimental Set-up	207-208
4.2.1. Water Sample Collection	208-210
4.2.2. Column Adsorption Concept under Transient Conditions	211-213
4.2.3. Designing of Fixed Bed Absorber Packed with CIHFO	214-220
4.3. Application of Cerium (IV)-Incorporated Hydrous Iron(III) Oxide	221-225
(CIHFO) in Column Operation	
4.3.1. Effect of Bed Depth (adsorbent mass) on Breakthrough Curve	221-222
4.3.2. Effect of Flow Rate on Breakthrough Curve	222-223
4.3.3. Effect of Concentration Variation on Breakthrough Curve	224-225
4.4. Fitting of Different Models on Breakthrough Curve	225-230
4.4.1. Thomas Kinetic Model	225-228
4.4.2. Bed depth service time (BDST) model	229-230
4.5. Modelling of the Adsorptive Removal of Fluoride by Artificial	231-233
Neural Networking (ANN) Model: A Statistical Approach	

4.6.Modelling of the Adsorptive Removal of Fluoride by Response	234-242
Surface Methodology (RSM): A Fitting Process Model	
4.6.1. Fitting of RSM Model	234-239
4.6.2. Interaction in-between the Independent Variables	239-241
4.6.2.1.Contour Plot	239-241
4.6.2.2. Perturbation Plot	241
4.6.3. Utilization of Desirability Functions for Optimization	241-242
4.7. Performance Indicator	247-248
4.8. Proposed Design of "Prototype" Filter Unit	248-249
4.9. Conclusion	250-251
5. Chapter -5: Conclusions and Future Scope of Work	252-255
6. References	256-286