
Chapter 2

Methodology

2.1 Correlated potential harmonic expansion method

: CPHEM

As explained earlier that GP equation ignores interatomic correlations and it is

non-linear in nature. So to go beyond the mean-field approach and tackle really

large number of particles we will utilize a correlated potential harmonic expan-

sion method (CPHEM). This method basically is a truncated subset of HHEM

method which regards only two-body correlation and ignores all higher-body cor-

relations. It can handle realistic interatomic interaction like van der Waals inter-

action, Calegero-Sutherland and Lennard-Jones potential etc. Here we will discuss

the methodology in detail :

2.1.1 Potential hamonic basis calculation

Consider a system of N = (A + 1) identical spinless bosons, each of mass m,

confined in a spherically symmetric harmonic oscillator potential of frequency ω.

The N-body Schrödinger equation for the trapped atoms can be written as

�
− �2

2m

N�

i=1

∇2
i +

N�

i=1

1

2
mω2r2i +

N�

i,j>i

V (�ri − �rj)

−E
�
ψ(�r1, ....,�rN) = 0,

(2.1)

where second term is the external harmonic oscillator potential, where �ri is the

position vector of i-th particle from the centre of mass (CM). Third term V (�ri− �rj)
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is the two-body interacting potential. Now we introduce A number of Jacobi

vectors as

�ζi =

�
2i

i+ 1

�
�ri+1 −

1

i

i�

j=1

�rj

�
, (i = 1, ..., A). (2.2)

The i−th Jacobi vector is proportional to the vector separation of the (i + 1)-th

particle from the CM of the fist i−th particle. The CM vector is given by

�R =
1

N

� N�

i=1

�ri
�
. (2.3)

The constants in front of the Jacobi vector is chosen in such a way that they

satisfy the the following

1

2

N�

i=1

∇2
�ri =

N−1�

j=1

∇2
�ζj
+

1

2N
∇2

�R. (2.4)

By using these Jacobi vectors we can separate out the N -body Schrödinger equa-

tion in centre of mass motion and relative motion. The Schrödinger equation for

the relative motion is

�
− �2

m

A�

i=1

∇2
�ζi
+ Vtrap +

A�

i,j>i

V (�ζi − �ζA)

−ER

�
ψ(�ζ1, ..., �ζA) = 0,

(2.5)

where ER is the energy of the relative motion and

Vtrap =
A�

i=1

1

2
mω2ζ2i . (2.6)

The evolution of the system can be traced by following the motion of a sin-

gle point in 3A-dimensional hyperspace. The hyperspherical variables are used

to define the corresponding polar coordinates of this point. The hyperspherical

coordinates are constituted by the hyperradius r and (3N − 4) = (3A − 1) hy-

perangles. Out of these, 2A hyperangles (ϕj, ϑj, j = 1, 2, ..., A) are just spherical

polar angles of A Jacobi vectors (�ζ1, ... �ζA) and (A−1) angles (φ2,φ3, ...φA) defines

the relative length of the Jacobi vectors through

14



ζA = rcosφA

ζA−1 = rsinφAcosφA−1

ζA−2 = rsinφAsinφA−1cosφA−2

ζA−3 = rsinφAsinφA−1sinφA−2cosφA−3

.

.

.

ζ2 = rsinφAsinφA−1.....sinφ3cosφ2

ζ1 = rsinφAsinφA−1......sinφ3sinφ2cosφ1 (2.7)

The hyperradius can be defined in terms of Jacobi vectors as

r =

�
A�

i=1

ζ2i

� 1
2

=

�
2

A+ 1

A+1�

i,j>i

r2ij

� 1
2

, (2.8)

where rij is the relative distance between the ij-pair of particles and r determines

the global size of the system. We express the 3A-dimensional Laplace operator in

terms of these 3A hyperspherical coordinates as

A�

i=1

∇2
3A ≡

A�

i=1

∇2
�ζi
=

∂2

∂r2
+

3A− 1

r

∂

∂r
− L2(ΩA)

r2
, (2.9)

L2(ΩA) is the grand orbital operator in 3A-dimensional space which is obtained

from a recurrence formula [29] and has the form

L2(ΩA) = 4(1− z2)
∂2

∂z2
+ 6[2− A(1 + z)]

∂

∂z

+2
l2(ωij)

1 + z
+ 2

L2(ΩA−1)

1− z
, (2.10)

where z = cos2φ, ωij = (ϑ,ϕ) and L2(ΩA−1) is the grand orbital operator in 3(A−
1)-dimensional space. The general grand orbital operator, L2(ΩA) of Eq. (2.10) is

defined through,

L2
i (Ωi) =

∂2

∂φ2
i

+ [3(i− 2)cotφi + 2(cotφi − tanφi)]
∂

∂φi

+
l2(ωi)

cos2φi

+
L2

i−1(Ωi−1)

sin2φi

(2.11)
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L2
i (Ωi) = 4(1− z2i )

∂2

∂z2i
+ 6[2− i(1 + zi)]

∂

∂zi

+2
l2(ωi)

1 + zi
+ 2

L2
i−1(Ωi−1)

1− zi
, (i = 2, 3, ..., A), (2.12)

where zi = cos2φi, ωi represents the set of two polar angles of Jacobi vector

�ζi. Note that L2
1(Ω1) = l2(ω1) and L2

A(ΩA) = L2(ΩA). The eigenfunction of

L2(ΩA) is called the hyperspherical harmonics (HH) and is given (without angular

momentum coupling) by [30]

Y[L](ΩA) = Yl1m1(ω1)
A�

j=2

Yljmj
(ωj)

(j)P
lj ,Lj−1

Lj
(φj) (2.13)

where

(j)P
lj ,Lj−1

Lj
=

� 2νjΓ(νj − nj)Γ(nj + 1)

Γ(νj − nj − lj − 1/2)Γ(nj + lj + 3/2)

� 1
2

×(cosφj)
lj(sinφj)

Lj−1P νj−1,lj+1/2
nj

(cos2φj)

(2.14)

(j = 2, 3....A),

with

νj = νj−1 + 2nj + lj + 3/2

= Lj +
3j

2
− 1

= Lj−1 + 2nj + lj +
3j

2
− 1 (j = 2, 3, ..., A)

(2.15)

In Eq. (2.14) Pα,β
n (x) is a Jacobi polynomial. In Eq. (2.13) [L] represents the set

of quantum numbers

{(l1,m1), (l2,m2), ...., (lN ,mA), n2, n3, ..., nA}

for a fixed value of grand orbital quantum number L = LA. The quantum number

Li is defined as

Li = Li−1 + 2ni + li, (2.16)

with L1 = l1. Hence

L ≡ LA = l1 +
A�

j=2

2nj + lj. (2.17)
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If we expand the full wavefunction in the complete set of hyperspherical harmonics

(HH) basis then tremendous numerical complexity arises. Exact numerical treat-

ment becomes unmanageable for systems containg more than three particles. Here

we are dealing with weakly interacting Bose-Einstein condensate as the density (n)

is very low the system is very dilute in nature, the average interparticle distance is

much larger than the range of interatomic interactions (as). The phase space den-

sity na3s << 1 so the three-body collisions are negligible. Thus, for the description

of weakly interacting condensate, one can safely ignore the effect of three-body

and higher-body correlations as three and higher body interaction are irrelevant

so molecule formation is forbidden. It facilitates us to decompose the many-body

wave function ψ into a subset of HHEM, which includes the two-body correlations

only. The full many-body wave function ψ is then decomposed in two-body Fad-

deev components (φij) which is a function of only rij and r. This decomposition

reduces the numerical complexity a lot by truncating the active degrees of freedom

to only four for any number of bosons. Since, only two-body correlation is relevant

so the total wave function can be written in terms of Faddeev component for the

interacting pair of bosons as

ψ =
N�

i,j>i

φij(�rij, r). (2.18)

φij is symmetric under the parity operation (Pij) and satisfies Faddeev equation

�
T + Vtrap − ER

�
φij = −V (�rij)

N�

k,l>k

φkl, (2.19)

where T = −�2
m

�A
i=1 ∇2

�ζ2i
is the total kinetic energy. Summing both sides over all

(ij) pairs, we get back the N -body Schrödinger equation. Thus, the total angular

momentum and orbital quantum number of the whole system arise only for the

interacting pair. The Faddeev component can be expanded in proper potential

harmonic (PH) basis as

φij(�rij, r) = r−
(3A−1)

2

�

K

P lm
2K+l(Ω

ij
A)u

l
K(r), (2.20)

where Ωij
A is the full set of hyperangles in the 3A dimensional space for the (ij)-th

interacting pair. An analytical expression for the PH basis, P lm
2K+l(Ω

ij
A), in 3A
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dimensional space can be found in Ref. [32] given as

P lm
2K+l(Ω

ij
A) = Ylm(ω

�
ij)

(A)P l,0
2K+l(φ)Y0(D − 3), (2.21)

D = 3A = 3(N − 1) and Y0(D − 3) is the zero-th order hyperspherical harmonics

(HH). In the (3A − 1) dimensional space, HH basis is constituted by (�ζ1, ... �ζA)

Jacobi vectors. Ylm(ω
�
ij) is the spherical harmonics for the interacting pair of

particles and ω� = (ϕ,ϑ), where ϕ and ϑ are the polar angles of rij. So the

hyperradius for the (A− 2) particles can be written as

ρij =
� A−1�

i=1

ζ2i

�1/2
, (2.22)

so that

r2 = r2ij + ρ2ij. (2.23)

The hyperangle φ is introduced as rij = r cosφ and ρij = r sinφ. Besides r,φ,ϕ

and ϑ there are (3A− 4) remaining variables. These are constituted by 2(A− 1)

polar angles associated with (A− 1) Jacobi vectors (�ζ1, ... �ζA−1) and (A− 2) angles

defining their relative lengths and collectively denoted by Ωij
(A−1) called hyperangles

in the 3(A − 1)-dimensional space. The corresponding form of Laplace operator

is given in the reference [31]. The set of (3A− 1) quantum numbers of HH is now

reduced to only 3 as for the (A− 1) noninteracting pair

l1 = l2 = ....... = lA−1 = 0

m1 = m2 = ....... = mA−1 = 0

n1 = n2 = ....... = nA−1 = 0 (2.24)

and for the interacting pair lA = l, mA = m and nA = K. Thus, the 3A-

dimensional Schrödinger equation reduces effectively to a four-dimensional equa-

tion with the relevant set of quantum numbers: hyperradius r, orbital angular

momentum quantum number l, azimuthal quantum number m, and grand or-

bital quantum number (2K + l) for any N . Substitution of Eq. 2.20 into the

Schrödinger equation we finally get a coupled differential equation as
�

− �2

m

d2

dr2
+

�2

mr2
{L(L+ 1) + 4K(K + α + β + 1)}

+ Vtrap(r)− ER

�
UKl(r)

+
�

K�

fKlVKK�(r)fK�lUK�l(r) = 0, (2.25)
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where UKl(r) = fKl u
l
K(r), L = l + 3N−6

2
, α = 3N−8

2
, β = l + 1

2
, l being

the orbital angular momentum of the system contributed by the interacting pair

and and K is called the grand orbital quantum number. fKl is a constant and

represents the overlap of the PH for interacting pair of particles with the sum of

PHs corresponding to all pairs [29] and given by

f 2
Kl =

�

k,l>k

<P lm
2K+l(Ω

ij
A) | P lm

2K+l(Ω
kl
A )>. (2.26)

The analytic form of f 2
Kl is given by

f 2
Kl = 1 +

�
2(A− 1)(−1

2
)lPαβ

K (−1

2
) +

(A− 1)(A− 2)

2
Pαβ
K (−1)δl,0

�
/P αβ

K (1) (2.27)

Details prescription of the methodology was discussed in our earlier works [33, 34,

35, 36, 38, 39]. Resulting potential matrix element VKK�(r) is given by

VKK�(r) =

�
P lm�

2K+l(Ω
ij
A)V (rij)P lm

2K�+l(Ω
ij
A)dΩ

ij
A. (2.28)

2.1.2 Inclusion of short-range correlation function

In the experimentally achieved BEC, the range of interatomic interaction is

generally smaller than the average interparticle separation. This is required to

prevent atom loss due to three-body collisions and formation of molecules. In GP

theory, the effective interaction is determined by a single parameter - the s−wave

scattering length (as). The sign of as determines nature of the interaction: a

positive (negative) value of as represents the repulsive (attractive) interaction. By

considering zero range contact δ interaction, the GP theory neglects the shape of

the potential. But for large number of bosons the effect of the range and shape

of the potential is an important issue [34, 35]. Inclusion of a finite-range realistic

two-body interaction is required. Note that a realistic interatomic interaction is

always attractive at larger separations, and has a strong short-range repulsion

which avoids the molecule formation. So, in our simulation a realistic interatomic

interaction viz., van der Waals potential has been considered to reflect the detailed

structure of the two-body potential which has a attractive long-range tail and

short-range repulsive core. The van der Waals interaction has two parameters : a
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hard core of radius rc and C6. By solving the zero-energy two-body Schrödinger

equation

−�2

m

1

r2ij

d

drij

�
r2ij

dη(rij)

drij

�
+ V (rij)η(rij) = 0, (2.29)

one can get as. The asymptotic form of the short-range correlation function, η(rij),

is in general accepted as c1rij + c2 and the corresponding s-wave scattering length

is as = − c2
c1
. For fixed C6 value, we adjust the hard core radius rc, such that as

has the desired value. This η(rij) is further used in the Eq. 2.20 to get the new

basis as

φij(�rij, r) = r−
(3A−1)

2

�

K

P lm
2K+l(Ω

ij
A)u

l
K(r)η(rij). (2.30)

and we call it correlated PH (CPH) basis.

Thus, η(rij) correctly reproduces the correct short-range separation of the inter-

acting pair and offers fast convergence in the PH basis. Instead of using Eq. 2.28,

the potential matrix is further calculated by using the equation

VKK�(r) = (hαβ
K hαβ

K�)
− 1

2

� +1

−1

�
Pαβ
K (z)V

�
r

�
1 + z

2

�

Pαβ
K� (z)η

�
r

�
1 + z

2

�
Wl(z)

�
dz, (2.31)

where z = cos (2φ), hαβ
K and Wl(z) are respectively the norm and the weight

function of the Jacobi polynomial Pαβ
K (z) [84]. By substituting this interaction

potential term along with the CPHEM basis in the Eq. 2.25 we can solve the final

coupled differential equation by our numerical method.

It is to be noted that the inclusion of the short-range correlation function in the

PH basis makes it non-orthogonal. Standard procedure can be adopted to handle

this kind of non-orthogonal basis. However, in our simulation we have checked

that η(rij) differs from a constant value near the narrow interval about the origin.

As the BEC length scale aho is very large in comparison with the interatomic

separation so the overlap matrix becomes a constant matrix. For the relevant

values of the global size of the system r ∼
√
3Naho the effect of the constant

matrix is taken into consideration by a suitable asymptotic constant value.
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2.1.3 Choice of system parameters

We had chosen the interaction potential to be the van der Waals potential, with

a short-range repulsive hard core of radius rc and a long attractive tail, given as

V (rij) = ∞ for rij < rc

= − C6

rij6
for rij ≥ rc. (2.32)

For the experimental BEC, the range of the two-body interaction is much smaller

than the average interparticle separation. The interatomic interaction for such

dilute BEC can be represented by a single parameter - s-wave scattering length

(as). We take characteristic oscillator length aho =
�

�
mω

as the unit of length

scale. Energies are expressed in the unit of oscillator energy (�ω). In a spherically

symmetric trap of frequency ω = 2π × 77.78 Hz, the scattering length as is 100

Bohr = 0.00433 o.u for 87Rb atoms - it corresponds to the JILA trap experiment.

In our numerical simulation, we calculate as from the asymptotic behaviour of

the two-body wave function calculated from the zero energy solution of the two-

body Schrödinger equation [37]. The value of as changes from negative to positive

passing through an infinite discontinuity as rc decreases [37]. At each discontinuity

one extra node in the two-body wave function appears that corresponds to one

extra two-body bound state. For 87Rb atoms the value of C6 = 6.4598×10−11 o.u.

For 87Rb atoms in JILA trap we chose rc = 1.121× 10−3 o.u which corresponds to

one-node in the two-body wave function and results as = 0.00433 o.u = 100 Bohr.

Whereas for 7Li condensate in RICE trap as = −27.3 Bohr = −45.7 × 10−5 o.u.

The magnetic trap was a roughly symmetric harmonic oscillator with frequencies

νx = 150.6 Hz, νy = 152.6 Hz and νz = 131.5 Hz. We use an isotropic harmonic

oscillator with frequency ν = (νxνyνz)
1
3 = 144.6 Hz. For 7Li the value of C6 =

1.71487 × 10−12 o.u [85]. For 7Li atoms in RICE trap, we fix rc = 5.3378 × 10−4

o.u which corresponds to zero-node in the two-body wave function and results

as = −45.7 × 10−5 o.u. Attractive BEC is not stable under the increment in the

particle number. If we increase the number of trapped bosons the central density

of the condensate increases eventually the system collapses because the kinetic

energy is unable to balance the interaction energy. The corresponding critical

number of atoms for collapse for 7Li condensate is Ncr = 1400 [4, 38, 39].
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2.1.4 Calculation of many-body effective potential

With this choice of parameters and taking the two-body interaction as van der

Waals interaction, we solve the coupled differential equation by hyperspherical

adiabatic approximation (HAA) [86, 87] where the hyperspherical motion is adia-

batically decoupled from the hyperangular motion. The potential matrix together

with the hypercentrifugal repulsion is diagonalized for a fixed value of r. The

lowest eigenvalue, called the lowest eigenpotential ω0(r) is further used in the

hyperradial differential equation,

�
− �2

m

d2

dr2
+ ω0(r)− ER

�
ζ0(r) = 0. (2.33)

ω0(r) provides the many-body effective potential in the hyperradial space in which

the condensate moves as a single quantum entity. We obtain ER and the hyperra-

dial wave function ζ0(r) in the extreme adiabatic approximation (EAA) [86, 87] by

solving Eq. 2.33 by Runge-Kutta method subject to appropriate boundary con-

ditions. The center of mass energy is 1.5 �ω which is further added to energy

eigenvalue to calculate the total energy. In this effective potential, the hyperradial

excitations for l = 0 are calculated. Similarly, for l > 0, hyperradial excitations

in the eigenpotential ωl(r) are obtained for different values of l. However, for

l > 0, as the numerical computation becomes very slow, we made some approx-

imations. From our numerical analysis, we checked that the main contribution

to the potential matrix comes from the diagonal hypercentrifugal term and we

disregard the off-diagonal matrix element for l > 0. Thus, the effective potential

ωl(r) in the hyperradial space for l > 0 is obtained by adding the hypercentrifugal

term corresponding to a particular value of l with the potential matrix element

for l = 0. This approximation has been numerically tested for the calculation of

thermodynamic properties of interacting bosons in JILA trap [3].

In an earlier work, calculation the ground state energy and low-lying collective ex-

citations with CPHEM method are compared with the experimental results [39].

The results are also compared with the mean-field results and hydrodynamic

model, the beyond mean-field effect, finite sized effect and the effect of interatomic

correlation have been extensively discussed. Thus, the present methodology not

only offers the beyond mean-field physics but a self-sufficient many-body technique
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which can tackle few hundred to a quite large number of particles in the trap by

a single code [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. In our present problem we

calculate a large number of energy levels Enl, where n runs from 0 to 300 and l

runs from 0 to 200. Of course, the upper cut-off in n and l are finally determined

by the convergence in the chemical potential.

2.2 Multiconfigurational time-dependent Hartree

method for boson: MCTDHB

We consider the time-dependent many-body Schrödinger equation (TDSE),

i∂t|Ψ� = Ĥ|Ψ�. (2.34)

Here, |Ψ� is the many-body state and the N -particle Hamiltonian Ĥ in dimen-

sionless units [88] reads,

H =
N�

i=1

�
−1

2

∂2

∂x2
i

+ V (xi)

�
+
�

i<j

W (xi − xj), (2.35)

where we set the trapping potential either to be the external harmonic trap as

V (xi) = 1
2
x2
i or optical lattice potential as V (xi) = VOL sin

2(kxi) with VOL as

the depth of the potential. W (xi − xj) is the two-body interaction potential.

All quantities are dimensionless and expressed in harmonic oscillator units. For

contact interaction, the interaction potential takes the form

W (xi − xj) = λδ(xi − xj), (2.36)

where λ is the interaction strength, for the contact interaction, determined by the

scattering length as and the transverse confinement frequencies [90]. For long-

ranged dipolar interaction

W (xi − xj) =
gd

|xi − xj|3 + α0

, (2.37)

where gd is the dipolar interaction strength and α0 is a short-range cut-off to avoid

the divergence at xi = xj. We choose the cut-off parameter α0 = 0.05 such a way

that the effective interaction Veff =
� 10.0

−10.0
1

x3+α0
dx =

� 10.0

−10.0
δ(x)dx = 1.0. For the
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present study, we restrict to few interacting bosons for all our calculations and

consider repulsive interactions, λ > 0 and gd > 0, exclusively. To investigate the

stationary properties of the system, we propagate the wave function in imaginary

time using the MCTDHX software [69, 70, 71, 72] to solve the MCTDHB equations

of motion [53, 54, 55, 56, 57]; thereby the system relaxes to the ground state.

The computation of the exact many-body wave function is a difficult problem.

To handle the time-dependent Schrödinger equation, Eq. (2.34), we expand the

many-body wave function |Ψ� of N interacting bosons in a complete set of time-

dependent permanents |�n; t� = |n1, ..., nM ; t� with at most M single particle states

or orbitals. The MCTDHB ansatz for the many-body wave function is thus

|Ψ(t)� =
�

�n

C�n(t)|�n; t�. (2.38)

Here, the permanents |�n; t� are symmetrized bosonic many-body states that are

also referred to as “configurations”. The sum in Eq. (2.38) runs on all configura-

tions �n of N particles in M orbitals. The number of permanents and coefficients

C�n(t) is Nconf=


 N +M − 1

N


. In the second quantized representation, the

permanents are given as

|n̄; t� = |n1, ...nM ; t� =
M�

i=1




�
b̂†i (t)

�ni

√
ni!


 |vac�. (2.39)

Here b̂†k(t) is the bosonic creation operator which creates a boson in the time-

dependent single particle state φk(�r, t). Note that the expansion coefficients

{C�n(t);
�

i ni = N} and the orbitals {φi(x, t)}Mi=1 that build up the permanents are

explicitly time-dependent and variationally optimized quantities [89]. In MCT-

DHB, �n = (n1, n2, ...nM) represent the occupations of the orbitals in a single

configuration and n1 + n2 + ... + nM = N , M is the number of single particle

functions that make up the permanents. Note that in the limit of M → ∞, the

set of permanents {|�n; t�} span the whole Hilbert space and the expansion is exact.

However, for practical calculation, we limit the size of the Hilbert space ensuring

convergence in the measured quantities like the energy, one- and two-body density

matrix with respect to the number of single particle states M . A set of coupled

equations of motion for, both, the time-dependent expansion coefficients C�n(t)
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and the time-dependent orbitals φk(�r, t) are obtained by requiring the stationarity

of the action of the time-dependent Schrödinger equation [53, 54] under varia-

tions of C�n(t) and φk(�r, t). MCTDHB is thus fundamentally different from exact

diagonalization, i.e., an ansatz built with time-independent orbitals. The set of

coupled equations are solved simultaneously for the ground state using imaginary

time propagation [69, 70, 71, 72].
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