
Chapter 3

Statistical fluctuation and

thermodynamic properties

3.1 Statistical fluctuation in ideal Bose gas

Study of statistical fluctuation and thermodynamic properties of bosonic systems

are old textbook problems [85, 91, 92, 93, 94]. Ideal Bose gas in one, two and three

dimension have been studied in great detail [95, 96, 97, 98, 99, 100]. At earlier

times it was predicted that phase transition (transition from normal Bose gas to

condensation) is not possible in lower dimensions [97, 101, 102, 103, 104, 105].

But Druten et al. had shown that phase transition is possible in 1D [106]. Static

and thermodynamic properties of weakly interacting bosonic system were stud-

ied by several groups [102, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117].

Earlier calculations of average properties such as the condensate fraction, critical

temperature and atom number fluctuation of the ground state were mainly per-

formed considering grand canonical ensemble (GCE) approach [95, 96, 101, 102,

112, 115, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]. In GCE the system is

connected with a reservoir, so the exchange of both energy and particle number

are allowed. Fluctuation in the occupation number for i−th energy state can be

written as δN2
i = Ni(Ni − 1). Above the transition temperature, it predicts the

correct result for the fluctuation in the ground state occupation number where one

can imagine the excited states as the reservoir for the ground state atoms. Below

or around the critical temperature, most of the particles occupy the ground state.
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Then the fluctuation in the ground state must die out but GCE ensemble predicts

that the fluctuation is of the order of the size of the system i.e., δN0 ∝ N0 - this

is called the grand canonical catastrophe [117, 125, 126, 127, 128, 129, 130]. This

GCE representation for ideal Bose gas had already been pointed out by several

groups [131, 132, 133, 134]. The constraints considered in GCE i.e., both energy

and particle number can be exchanged is in sharp contrast with the experimen-

tal arrangement where the atoms are trapped so total number of particles are

fixed. Due to this constraint of particle number exchange, the result obtained

by GCE approach is questionable. To explain the experimental observation and

predict correct new physics, one needs to consider the microcanonical or canonical

ensemble approach.

3.2 Statistical fluctuation in interacting Bose gas

The preceding discussion was mainly focused to describe the study of fluctuation

properties for the non-interacting or ideal Bose gas. However, in experiments,

people deal with the interacting Bose gas in harmonic oscillator trap. It is exper-

imentally observed that, due to the inhomogeneity, even the weak-interaction has

significant effect on the measures of several thermodynamic properties. As the

inclusion of the interaction makes the many-body problem nontrivial, most theo-

retical results in this direction are mainly centered on the homogeneous case. Due

to the GCE catastrophe, several methodologies emerge which consider a canonical

or microcanonical approach to properly address fluctuations in interacting Bose

gas. Giorgini et al. calculated fluctuation in interacting Bose gas by Bogoliubov

quasi-particle approach [135]. They have reproduced the non-interacting limiting

case as found in the work of Politzer et al. [118]. Later, Kocharovsky et al. pub-

lished a series of works to extend the idea of this methodology [107, 109, 136, 137].

They have also used another methodology which is based on the number conserving

canonical approach [108, 138] and studied condensate fraction and several orders

of central moment. A hybrid master equation approach was also introduced to cal-

culate several properties of BEC [139, 140] which gives anomalous fluctuation. But

Idziaszek et al. [141] had shown that the fluctuation is linearly proportional to the
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particle number. Fluctuation in interacting Bose gas has been calculated by sev-

eral other groups by exact recursion relation method [112, 115, 111, 110, 142, 143].

However, none of the above methodologies deal with the experimental situation

of JILA and RICE trap. The first attempt had been taken by Chakrabarti and

Bhattacharyya [43] to study the fluctuation of repulsive BEC in JILA trap. Ex-

perimental observation of statistical fluctuation for repulsively interacting BEC in

harmonic oscillator can be found in the Ref. [144]. However, the effect of attractive

interaction and anisotropy in the trap are still an unsolved area of research. So,

we will discuss the effect of interaction and trapping potential on several statisti-

cal properties like condensate fraction, fluctuation in the ground state occupation

number, several orders of central moment and specific heat. All these properties

have been measured very minutely for the whole temperature region to describe

the process of phase transition from condensation to normal Bose gas.

3.3 Recursion relation to calculate partition func-

tion

For the present study, we start from the canonical ensemble which takes care of

the intermediate situation of the microcanonical ensemble and the grand canon-

ical ensemble - so is the most appealing one. In the microcanonical ensemble,

the gas is completely isolated and there is no exchange of energy or atoms so

it gives some over-estimated values for several statistical properties. Whereas in

the grand-canonical ensemble, only the average energy per atom and the average

number of atoms are fixed, thus there is an exchange of both energy and atoms

which leads to the grand canonical catastrophe [117, 125, 126, 127, 128, 129, 130].

P. T. Landsberg first proposed a recursion method [131] to calculate the par-

tition function for the canonical ensemble with moderate atom numbers and an

iteration procedure with respect to the number of particles was used. Later,

Landsberg’s method was improved by E. D. Trifonov et al. [142] to facilitate its

application for a larger number of particles and a wider temperature range. It also

demonstrates the efficiency of recursion technique for three dimensional isotropic

trapped ideal Bose gas. For completeness, here we briefly summarize the method
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which we utilize in our numerical calculation.

The probability of the N-particle system in a state, described by an occupation

number {ni}, is given by

P{ni} =
1

ZN

exp

�
−E{ni}

kBT

�
, (3.1)

where ZN is the partition function of the N-particle system and can be defined as,

ZN =
�

{ni}
exp

�
−E{ni}

kBT

�
(3.2)

with the summation performed over all combinations of the occupation numbers

that satisfy the condition
�

i

ni = N. (3.3)

Thus the probability of finding nk particles in k-th single particle state is deter-

mined as

P (k)
nk

=
Z

(k)
N−nk

ZN

exp

�
−nkEk

kBT

�
. (3.4)

where Z
(k)
N−nk

is the partition function for (N − nk) particles, with the k-th single

particle state excluded from the sum. Ek is the energy of the k-th single particle

state.

In terms of Landsberg’s recursion method, using iteration with respect to

the number of particles, the partition function can be calculated by a simple

algorithm [142] as

Zn =
1

n

n�

p=1

SpZn−p, Z0 = 1; n = 1, 2, ..., N (3.5)

where,

Sp =
�

j

exp(− pEj

kBT
). (3.6)

This is an ideal method where, the summation can be performed analytically

like three dimensional isotropic harmonic trap. Landsberg’s method was used to

calculate the partition function of Bose gas with moderate particle number (∼ 100)

and for sufficiently low temperature T << Tc [131]. For our many particle system,

the energy of a state (n, l) is Enl. The the above equation takes the form

Sp =
nmax�

n=0

lmax�

l=0

(2l + 1) exp(−pEnl

kBT
). (3.7)
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The limits for nmax and lmax are described in the methodology section. Later,

Trifonov et al. improved Landsberg’s methodology for larger particle number and

increasing temperature [142]. The recursion formulas are:

Z
{0}
0 = 1 , (3.8)

Z{n−1}
n =

n−1�

p=0

Sn−pZ
{n−1}
p

n
, n = 1, ....., N, (3.9)

Z
{n}
k =

Z
{n−1}
k�n

p=0 Z
{n−1}
p

, k = 0, ....., n. (3.10)

The probability of finding n0 particles out of total particle N in the ground state

is

Pn0 = Z
{N}
N−n0

, (3.11)

where

ZN = Z
{N}
N ΠN

n=1

n�

p=0

Z{n−1}
p . (3.12)

The relation between the probability distribution of n0 number of atoms in the

ground states Pn0 and the canonical partition function is given by

Pn0 =
ZN−n0(T )− ZN−n0−1(T )

ZN(T )
(3.13)

Accordingly the mean number of particles in the ground state and its root-

mean-square fluctuation can be found from the relation

< n0 >=
N�

n0=0

n0Pn0 (3.14)

and

δn0 =
�
< n2

0 > − < n0 >2 (3.15)

where

< n2
0 >=

N�

n0=0

n2
0Pn0 . (3.16)

Central moments are obtained as

<
�
n0− < n0 >

�m

>=
N�

n0=0

�
n0− < n0 >

�m

Pn0 . (3.17)

The moment with m = 2 is defined as the standard deviation and m = 3, 4 are

defined as the third- and fourth-order central moments respectively.

30



3.3.1 Calculation of specific heat

For a fixed temperature T , the distribution of N number of bosons in the energy

level Enl according to the Bose distribution can be written as

f(Enl) =
1

eβ(Enl−µ) − 1
(3.18)

The average energy E(N, T ) of the system at any temperature T can be obtained

as

E(N, T ) =
∞�

n=0

∞�

l=0

(2l + 1)f(Enl)Enl. (3.19)

The heat capacity CN(T ) at a fixed N is calculated by the partial derivative of

E(N, T ) with respect to T as

CN(T ) = β
∞�

n=0

∞�

l=0

(2l + 1)Enle
β(Enl−µ)

(eβ(Enl−µ) − 1)2

�(Enl − µ)

T
+

∂µ

∂T

�
, (3.20)

where chemical potential µ is a function of T , β = 1
kBT

, where kB is the Boltz-

mann’s constant.
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