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and flat HREE distribution pattern, negative Eu anomaly. 

Fig. 7.20. Compositional plots of Keonjhar QPC normalized to host sandstones A. Major 

oxide variations normalized with respect to sandstones. Note. variable enrichment in 

Fe2O3, Na2O, TiO2 and MnO and depletion in MgO, K2O and P2O5. B. Trace element 

compositions normalized with respect to sandstone. Note enrichment in Cr, Ni, Th, U, Sr 

and Pb in QPC and depletion in Co, Rb, Cs and Ba. C.  Rare Earth Element plot 

normalized with respect to sandstone. Note enrichment in LREE in QPC and retention of 

negative Eu-anomaly. 

Fig. 7.21. Keonjhar QPC Rare Earth Element (REE) normalized diagram with respect to 

chondrite. Note considerable enrichment in the LREE and a consistent negative Eu-

anomaly. 

Fig.7.22. Compositional plots of Keonjhar QPC normalized to Singhbhum Granite Phase 

I A. Major oxide variations normalized with respect to Singhbhum Granite Phase I. Note 

enrichment of SiO2, Al2O3 and MnO. B. Trace element variations normalized with 

respect to Singhbhum Granite Phase I. Note enrichment of Cu, Ni, Rb, V and Ta. C. Rare 

Earth Element variations normalized with respect to Singhbhum Granite Phase I. Note. 

similar trend for LREE and HREE. 

Fig.7.23. Compositional plots of Keonjhar QPC normalized to Singhbhum Granite Phase 

II A. Major oxide variations normalized with respect to Singhbhum Granite Phase II. 
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Note enrichment of SiO2, Al2O3 and MnO. B. Trace element variations normalized with 

respect to Singhbhum Granite Phase II. Note enrichment of Cu, Ni, V and Ta. C. Rare 

Earth Element variations normalized with respect to Singhbhum Granite Phase II. Note 

negative Eu- anomaly and enrichment of HREE. 

Fig.7.24. Compositional plots of Keonjhar QPC normalized to Singhbhum Granite Phase 

III A. Major oxide variations normalized with respect to Singhbhum Granite Phase III. 

Note enrichment of SiO2, Al2O3 and MnO. B. Trace element variations normalized with 

respect to Singhbhum Granite Phase III. Note enrichment of Cu, Ni and V.  C. Rare Earth 

Element variations normalized with respect to Singhbhum Granite Phase III. Note flat 

trend for LREEs and HREEs. 

Fig.7.25. Compositional plots of   Keonjhar QPC normalized to Singhbhum Granite all 

Phase (mean value) A. Major oxide variations normalized with respect to Singhbhum 

Granite Phase mean. Note enrichment of SiO2, Al2O3 and MnO. B. Trace element 

variations normalized with respect to Singhbhum Granite Phase mean. Note enrichment 

of Cu, Ni and V. C. Rare Earth Element variations normalized with respect to Singhbhum 

Granite Phase mean. Note flat trend for LREEs and HREEs. 

Fig. 7.26. Histogram showing the correlation coefficient from the correlation matrix for 

compositions of U, Th with respect to A. Major oxides B. Trace elements. C. LREE D. 

HREE. 

Chapter 8  
U-Pb Detrital Zircon Geochronology of Iron Ore Conglomerates of the 
Chamakpur Member: Implications for the Origin of High-grade Iron 
Ore 
 
Fig. 8.1. Major Iron Ore Deposits of the world showing age of the host BIF succession 

(marked in blue ink within bracket) and available age data of ore formation (marked in 

green ink)  from some of the deposits.  Labrador Trough (Conliffe 2015)1;  Animikie 

group (Goodwin 1996, p. 140)2;  Carajás Formation (Figueiredo e Silva et al. 2011)3;  

Cauê Formation, Itabira Group Quadrilátero Ferrífero (Cabral et al. 2012)4;  Urucum 

(Beukes et al. 2003)5;  Sishen-Beeshoek (Smith and Beukes 2016)6; Thabazimbi deposits 

(Smith and Beukes 2016)7; Mt. Nimba (Force 1983)8; Krivoy Rog (Sośnicka et al. 

2015)9; Bailadila (Muklhopadhyay et al. 2008)10;  Goa ( Mukhopadhyay et al. 2008a)11 ; 
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Donimalai  (Mukhopadhyay et al. 2008a)12;  Noamundi (Mukhopadhyay et al. 2008a)13;  

Hamersley Group, Western Australia (Morris 1985;Harmsworth et al. 1990)14. 

Fig. 8.2. Google map for location of the Chamakpur iron ore deposit. 

Fig. 8.3. A. Composite stratigraphic succession of the Keonjhar Quartzite. Note: two 

members classified within this formation: Asurkhol Member and Chamakpur Member. 

The Chamakpur Member occurs as lentil and is entirely represented by iron ore clast-

bearing conglomerates. B. Field photograph of lensoid iron ore conglomerate bodies 

mined out from Chamakpur Member. C. Field photograph of iron ore conglomerate with 

clasts of hard iron ore (dark steel gray) and BIF (reddish) in Chamakpur Member. 

Fig. 8.4. Reflected light photomicrograph of A. Specularite blades associated with 

anhedral and microplaty hematite. B. Quartz grain (dark gray) surrounded by anhedral 

and microplaty hematite. 

Fig. 8.5. BSE-SEM images of A.Idiotopic hematite (martite) surrounded by microplaty 

hematite. B.Specularite blades (arrow) in network of microplaty hematite. C.Anhedral 

and microplaty hematite forming mosaic texture for hard ores in ore pebble. D.Anhedral 

and microplaty hematite network revealing porosity distribution in hard ores from iron 

ore pebble in conglomerate. 

Fig. 8.6. Detrital zircons LA-ICPMS U-Pb age ranging from 3000–3256 Ma (considered 

those zircons with <5% discordance limit) from sandstone clasts in iron ore conglomerate 

and overlying sandstone beds of Keonjhar Quartzite. 
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Abstract 

The Keonjhar siliciclastics in the Singhbhum craton, eastern India, represents one of the 

best preserved examples of Mesoarchean sedimentation. This PhD dissertation programme 

throws light on the depositional system and nature of Mesoarchean upper crust from a 

collective study of internal stratigraphic development, depositional settings and provenance. 

The succession is classified here as a formal lithostratigraphic unit of the rank of formation 

and named as Keonjhar Quartzite. Two members have been proposed, namely, the Asurkhol 

Member that forms the lower conglomerate-pebbly sandstone-coarser sandstone dominated 

part and a lentil of iron ore clast-bearing conglomerate at the upper part, namely, the 

Chamakpur Member. Facies analysis reveals that the lower part of the succession is 

dominated by mass-flow deposits of conglomerates from proximal subaerial fan which grades 

upwards to cross-stratified and wavy bedded mature arenites of shelf depositional setting. The 

sequence includes a LST with Incised Valley Fills from FSST followed by a TST and TST-

HST. 

Petrographic study depicts recycled orogen to craton interior provenance. SEM-CL fabric 

analysis of the quartz framework grains reveals predominance of plutonic quartz over 

metamorphic type and suggests that high-grade components from collisional geodynamics 

were not significant in the Paleo-Mesoarchean upper continental crust in the Singhbhum 

craton. 

The superchondritic Hf isotopic compositions expressed as €Hf values against their 

stratigraphic ages from the detrital zircon LA-ICPMS U-Pb-Lu-Hf compositions suggest 

depleted mantle source and juvenile crustal components and possible onset of accretionary 

plate tectonics.  

Uranium mineralization in the basal QPCs reveals U-concentration in the U-Ti oxides and 

indicates supergene mobilization of U. Geochemical proxies suggest a passive margin setting 

with cratonic as well as active margin components. The REE pattern with negative Eu-

anomaly indicates the presence of differentiated upper crust suitable for the source of U-Th 

minerals for the U-QPCs. 

The iron ore conglomerate yielded detrital zircon U-Pb ages of around 3.0 Ga. The hard 

ore clasts in the conglomerate suggest that the ore formation in the source terrain predated the 

deposition of the conglomerate and hence the primary iron ore genesis at the source from 

where the ore clasts were derived should be at least >3.0 Ga event.  




