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µM) and NR (0.5 mM). Autophagy related genes were analysed 
following 24 h post treatment. Results are representative of at least 
three independent experiments. *p < 0.05, **p < 0.01, and 
***p<0.001 compared to control sample   77 

Fig. 48.  SH-SY5Y cells were treated with rotenone along with bafilomycin 
(A) Immunofluorescence analysis of SH-SY5Y cells treated with 5 
µM of rotenone and bafilomycin (100 nM) for 24 h and compared 
to untreated control cells. DAPI (blue) and MAP2 (green) staining 
of both the treated and untreated samples are shown. Scale bars = 
25 µm (B) Real-time PCR analysis of SH-SY5Y cells treated with 
rotenone (5 µM) and bafilomycin (100 nM) for 24 h. Expression of 
Sarm1 from whole cell extracts were analysed. Results are 
representative of at least three independent experiments. *p < 0.05, 
**p < 0.01, and ***p<0.001 compared to control sample   78 

Fig. 49.  HEK293 cells were treated with rotenone. (A, B) 
Immunofluorescence analysis of HEK293 cells treated with 500 
nM of rotenone (B) for 24 h and compared to untreated control 
cells (A). Mitotracker green and Lysotracker red staining of both 
the treated and untreated samples are shown. Scale bars = 10 µm 79 
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Fig. 50.  SH-SY5Y cells were treated with rotenone. (A-C) Real-time PCR 
analysis of cells as treated with rotenone (5 µM).  (A),  
(B) and IL6 (C) genes was analysed following 24 h post-treatment 80 

Fig. 51. SH-SY5Y cells were treated with rotenone along with resveratrol 
(A, B) Real-time PCR analysis of cells as treated with rotenone (5 
µM) in the presence or absence of resveratrol (5 or 20 µM as 
indicated).  (A) and Sarm1 (B) genes were analysed 
following 6 h post-treatment. (C-E) SH-SY5Y cells were treated 
with rotenone along with TNF -time PCR analysis 
of cells treated with rotenone (5 µM) in the presence or absence of 

both  (C) and Sarm1 (D) were analysed following 24 h post-
treatment. (E) MTT assay of cells treated with rotenone (5 µM) in 
the presence or absence of neutralizing anti
mg/ml) for 24 h. Results are representative of at least three 
independent experiments. *p < 0.05, **p < 0.01, and ***p<0.001 
compared to control sample   80 

Fig. 52.  Pesticide exposure in agricultural fields may induce risk of 
sporadic PD that is associated with axonal degeneration and 
broken synaptic connections in the dopaminergic neurons   86 

Fig. 53.  Chemical structure of Sodium arsenite   92 

Fig. 54.  (A) Schematic representation of rotenone treatment in the 1-day 
old flies for survival curve assay. (B) Survival curve of 1-day old 
flies exposed to varying concentration of rotenone (50, 100, and 
200 µM). Fly viability was scored over a period of 40-days using a 
minimum of 100 flies per treatment. The statistical significance 
was calculated as log-rank using Mantel Cox test. (C E) Negative 
geotaxis assay of 1-day old flies exposed to rotenone at 
concentrations indicated above for 1-day (C), 10-days (D) and 20-
days (E). *p < 0.05, **p < 0.01, and ***p < 0.001 compared to 
control flies   99 

Fig. 55.  (A) Schematic representation of rotenone treatment in the 1-day, 
10-day, and 20-day old flies for survival curve assay. (B) Age-
dependent survival of flies exposed to 100 µM of rotenone at 1-
day, 10-day, and 20-day following eclosion. Fly viability was 
scored up to 40-days, post-eclosion using a minimum of 100 flies 
per treatment. (C) Negative geotaxis assay of 20-day old flies 
exposed to 200 µM rotenone for 3-days. *p < 0.05, **p < 0.01, and 
***p < 0.001 compared to control flies   100 
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Fig. 56.  (A) Schematic representation of experimental setup for rotenone 
treatment in the aged (20-days old) flies. (B, C) Expression of 
dSarm in young flies (1-day old) exposed to 200 µM of rotenone 
for 1-day, 10-days, 20-days, and 30-days (B) and aged flies (20-
days old) to 200 µM of rotenone for 3-days and 5-days post-
treatment (n = 5) (C). *p < 0.05, **p < 0.01, and ***p < 0.001 
compared to control flies    101 

Fig. 57.  (A) Multifocal confocal image of dopaminergic neurons following 
tyrosine hydroxylase (TH) immunostaining (green) and Elav 
immunostaining (red) in the brains of flies exposed to 200 µM 
rotenone at 20-days post-eclosion for 3-days (right-hand panel). 
Results were compared to age-matched rotenone untreated flies 
(left-hand panel). Scale bars = 200 µm. (B) Bar graph represents 
the number of dopaminergic neuron cell bodies in the control and 
rotenone (200 µM) treated fly brains (n = 3). (C) Representative 
western blot analysis of the dopaminergic neuronal marker tyrosine 
hydroxylase in 20-day old flies exposed to 200 µM rotenone and 
analysed at day-3 post- -actin served as a loading 
control and data was compared with age-matched untreated control 
flies (n = 3). Results are representative of at least three independent 
experiments. *p < 0.05, **p < 0.01, and ***p<0.001 compared to 
control sample    102 

Fig. 58.  (A-C) Mathematical model to correlate rotenone intake, SARM1 
induction and subsequent motor deficits    103 

Fig. 59.  (A) Schematic representation of rotenone treatment of 1-day old 
flies for 10-days followed by withdrawal and further experiments 
were performed at the time points indicated. (B) Survival curve of 
control adult flies and flies exposed for 10-days to 200 µM of 
rotenone and subsequent transfer of these flies to normal media. 
Fly viability was scored over a period of 40-days using a minimum 
of 100 flies per treatment. (C) Negative geotaxis assay of adult 
flies exposed to rotenone as indicated above for 10-days and 
experiment performed at day-20 post-exposure. (D) dSarm 
expression was analysed at day 20 of flies treated above and results 
compared to age-matched untreated control flies. *p < 0.05, **p < 
0.01 and ***p < 0.001 compared to control flies    103 

Fig. 60.  (A) Survival curve of control adult flies and flies exposed to 200 
µM of rotenone in the presence or absence of the ROS scavenger 
N-acetyl cysteine or NAC (1 mg/ml). Fly viability was scored over 
a period of 30-days, using a minimum of 100 flies per treatment. 
(B) Negative geotaxis assay of the flies at 10-days post-exposure. 
(C) ROS generation assay in 1-day old flies exposed to 200 µM 
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rotenone for 10-days in the presence or absence of NAC. (D) 
Survival curve of control adult flies and flies exposed to 360 µM 
of Arsenic (As) along with NAC (1 mg/ml). Fly viability was 
scored over a period of 30-days, using a minimum of 100 flies per 
treatment. (E) Negative geotaxis assay of the flies exposed to As in 
the presence or absence of NAC at 10-days post-exposure. *p < 
0.05, **p < 0.01 and ***p < 0.001 compared to control flies   104 

Fig. 61.  Real-time PCR analysis of 1-, 10- and 20-day old flies, exposed to 
200 µM of rotenone. (A) Pink1, (B) Atg3 and (C) Atg5 genes were 
analysed. Results are representative of at least three independent 
experiments. *p < 0.05, **p < 0.01, and ***p<0.001 compared to 
control sample   106 

Fig. 62.  Real-time PCR analysis of 1- and 20-day old flies, exposed to 200 
µM of rotenone. (A) nAChRbeta 3 and (B) EAAT genes were 
analysed. Results are representative of at least three independent 
experiments. *p < 0.05, **p < 0.01, and ***p<0.001 compared to 
control sample   106 

Fig. 63.  (A) Real-time PCR analysis of 1-, 10- and 20-day old flies, 
exposed to 200 µM of rotenone. Nrx-1 gene was analysed. Results 
are representative of at least three independent experiments. (B) 
Representative western blot analysis of Synapsin and Syntaxin in 
20-day old flies exposed to 200 µM rotenone. Tubulin served as a 
loading control and data was compared with age-matched 
untreated control flies (n = 3).  *p < 0.05, **p < 0.01, and 
***p<0.001 compared to control sample   107 

Fig. 64.  Real-time PCR analysis of 1- and 20-day old flies, exposed to 200 
µM of rotenone. (A) hsp70 and (B) p120 genes were analysed. 
Results are representative of at least three independent 
experiments. *p < 0.05, **p < 0.01, and ***p<0.001 compared to 
control sample   108 

Fig. 65.  Eiger expression in (A) younger (1-day old) flies exposed to 200 
µM of rotenone for 1-day, 10-days, 20-days, and 30-days and (B) 
aged (20-days old) flies to 200 µM of rotenone for 3-days and 5-
days post-treatment. (C) Expression of Relish in 1-day old flies 
exposed to 200 µM of rotenone for 1-day and 10-days. Results are 
representative of at least three independent experiments. *p < 0.05, 
**p < 0.01, and ***p<0.001 compared to control sample   109 

Fig. 66.  (A) Schematic representation of rotenone treatment of 1-day and 
10-day old flies followed by withdrawal in 10 days and further 
experiments were performed at the time points indicated. (B-E) 
Real-time PCR analysis of young and aged flies, exposed to 200 
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µM of rotenone. Upd1 (B) ,2 (C) ,3 (D) and Wnt1 (E) expression in 
younger (1-day old) flies exposed to 200 µM of rotenone and aged 
(10-days old) flies to 200 µM of rotenone. Results are 
representative of at least three independent experiments. *p < 0.05, 
**p < 0.01, and ***p<0.001 compared to control sample    109 

Fig. 67.  (A) Survival curve of 1-day old flies exposed to 200 µM of 
rotenone in the presence or absence of 1 µM of resveratrol. Fly 
viability was scored over a period of 20-days, using a minimum of 
100 flies per treatment. (B) Negative geotaxis assay of the same 
samples at 10-days post-exposure. (C, D) Real-time PCR analysis 
of fly heads as treated above. Both (C) Ect4 and (D) Eiger genes 
were analysed in the 1-day old flies following 1-day post-exposure 
to rotenone (200 µM) in the presence or absence of resveratrol (1 
µM) and results compared to age-matched untreated control flies. 
(E-G) Real-time PCR analysis of fly heads as treated above. (E) 
TotM, (F) Tep1 and (G) Tep2 genes were analysed in the 1-day old 
flies following 1-day post-exposure to rotenone (200 µM) in the 
presence or absence of resveratrol (1 µM) and results compared to 
age-matched untreated control flies. Results are representative of at 
least three independent experiments. *p < 0.05, **p < 0.01, and 
***p<0.001 compared to control sample    111 

Fig. 68.  (A, B) Real-time PCR analysis of fly heads. Both (A) Sir2 and (B) 
Ampk genes were analysed in the flies following exposure to 
rotenone (200 µM) in the presence or absence of resveratrol (1 
µM). Results are representative of at least three independent 
experiments. *p < 0.05, **p < 0.01, and ***p<0.001 compared to 
control sample   112 

Fig. 69.  (A, B) Survival curve of 1-day old flies exposed to 100 µM (A) 
and 200 µM (B) of rotenone in the presence or absence of 1 mM of 
NR. Fly viability was scored over a period of 30-days, using a 
minimum of 100 flies per treatment. (C-D) Negative geotaxis assay 
of the flies exposed to (C) 200 µM and (D) 100 µM of rotenone in 
the presence or absence of 1 mM of NR. Results are representative 
of at least three independent experiments. *p < 0.05, **p < 0.01, 
and ***p<0.001 compared to control sample   113 

Fig. 70.  Real-time PCR analysis of fly heads. dSarm, Eiger and Relish 
genes were analysed in the (A) 1-day and (B) 10-days old flies 
following exposure to rotenone (100 µM) in the presence or 
absence of NR (1 µM). Results are representative of at least three 
independent experiments. *p < 0.05, **p < 0.01, and ***p<0.001 
compared to control sample   114 
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Fig. 71.  Negative geotaxis assay of the 20-days old flies exposed to (A) 
100 µM and (B) 200 µM of rotenone in the presence or absence of 
1 mM of NR. (C) Survival curve of NR pre-treated 10-days old 
flies exposed to 200 µM of rotenone in the presence or absence of 
1 mM of NR. Fly viability was scored over a period of 30-days, 
using a minimum of 100 flies per treatment. (D) Negative geotaxis 
assay of the same samples. Results are representative of at least 
three independent experiments. *p < 0.05, **p < 0.01, and 
***p<0.001 compared to control sample   115 

Fig. 72.  Real-time PCR analysis of fly heads. (A) dSarm and (B) Eiger 
genes were analysed in the 20-days old flies following exposure to 
rotenone (100 µM) in the presence or absence of NR (1 µM). 
Results are representative of at least three independent 
experiments. *p < 0.05, **p < 0.01, and ***p<0.001 compared to 
control sample    115 

Fig. 73. Proposed model for the study. Exposure to rotenone (pesticide) 
stimulates production of Eiger in the brain milieu of w1118 flies that 
further mediates the increased expression of the Ect4 or dSarm 
(NADase) from dopaminergic neurons. This, in turn, induces the 
rapid loss of these neurons that ultimately leads to severe motor 
deficits and loss of survival. Presence of the anti-inflammatory 
molecule resveratrol or the NAD+ supplement NR can partially 
reverse rotenone-induced neurotoxicity   121 
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