
Chapter 2

Comaximal Subgroup Graph of a

Group

2.1 Introduction

In this chapter, we mainly focus on various aspects of graphs defined on

a group structure and discuss many important connections between them.

The idea of associating graphs with groups, which started from Cayley

graphs, is now an important topic of research in modern algebraic graph

theory. The most prominent graphs defined on groups in recent years are

power graphs [19], enhanced power graphs [1], commuting graphs [33], non-

commuting graphs [2], subgroup inclusion graphs [25] etc., and various

works like [15] has been done on these topics. As a comprehensive survey

on different graphs defined on groups, [18] is an excellent reference. These

graphs help us in understanding various group properties using graph the-

oretic interpretations. Following these footsteps, Akbari et.al. introduced
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co-maximal subgroup graph of a group G in [6].

Definition 2.1.1 Let G be a group and S be the collection of all non-trivial

proper subgroups of G. The co-maximal subgroup graph Γ(G) of a group G

is defined to be a graph with S as the set of vertices and two distinct vertices

H and K are adjacent if and only if HK = G.

Although the definition of subgroup product graph allows the possibility

of G being infinite, in this thesis, we restrict ourselves to finite groups

only. However if the results translate similarly to infinite groups, we will

mention it separately. Note that the definition implies that the graph is

undirected as HK = G if and only if KH = G. In this chapter, we continue

the study of co-maximal subgroup graph of a group. We also introduced

deleted co-maximal subgroup graph Γ∗(G) which is obtained by removing

the isolated vertices of Γ(G). We study the existence of isolated vertices of

Γ(G), connectedness of Γ∗(G) and characterize various properties of Γ(G)

and Γ∗(G).

2.1.1 Preliminaries

We first recall some definitions and results on graph theory and group the-

ory. For undefined terms and results on group theory, please refer to [16]

and [37] and that of graph theory, please refer to [44].

Let Γ be a graph. The diameter of a connected graph Γ is the maximum

distance between any two vertices in Γ. The minimum degree of a vertex
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in Γ is denoted by δ(Γ) and girth(Γ) denotes the length of a smallest cycle

in Γ.

Let G be a finite group. Denote by π(G), the set of prime divisors of |G|.
A proper subgroup H of a group G is said to be a maximal subgroup if there

does not exist any proper subgroup of G which properly contains H. A

group G is said to be minimal non-cyclic if G is non-cyclic but every proper

subgroup of G is cyclic. The set of all maximal subgroups of the group G is

denoted by Max(G). The Frattini subgroup of a group G is defined as the

intersection of all maximal subgroups of G and is denoted by Φ(G). The

intersection number of a finite group G, denoted by ι(G), is the minimum

number of maximal subgroups of G whose intersection is equal to Φ(G). By

D2n, we mean the dihedral group of order 2n.

Now, we state a few standard group theoretic results which we will be

using throughout the paper.

Theorem 2.1.1 (Miller and Moreno, 1903 ([32],[43],Theorem 1)) A

group G is a minimal non-cyclic group if and only if G is isomorphic to one

of the following groups:

1. Zp × Zp.

2. The quaternion group Q8 of order 8

3. ⟨a, b|ap = bq
m

= 1, b−1ab = ar⟩, where p and q are distinct primes and

r ̸≡ 1 (mod p), rq ≡ 1 (mod p).

Proposition 2.1.1 Let G be a finite group.
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1. If G has a unique maximal subgroup, then G is cyclic p-group.

2. If G has exactly two maximal subgroups, then G is cyclic and |G| =
paqb, where p, q are distinct primes.

3. G is nilpotent if and only if all maximal subgroups of G are normal in

G.

4. |G/Φ(G)| is divisible by all primes p dividing |G|.

2.1.2 Previous Works

In [6], authors proved various results on Γ(G). We recall a few of them,

which will be used in this paper.

Theorem 2.1.2 ([6], Theorem 2.2) Let G be a group. If δ(Γ(G)) ≥ 1,

then diam(Γ(G)) ≤ 3.

Theorem 2.1.3 ([6], Theorem 2.4) Let G be a finite group with at least

two proper non-trivial subgroups. Then the following are equivalent:

1. Γ(G) is connected.

2. δ(Γ(G)) ≥ 1.

3. G is supersolvable and its Sylow subgroups are all elementary abelian.

4. G is isomorphic to a subgroup of a direct product of groups of squarefree

order.
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Corollary 2.1.2 [6] Let G be a nilpotent group. Then Γ(G) is connected if

and only if Φ(G) = {e} or G ∼= Zp2, for some prime number p.

Theorem 2.1.4 [[6], Theorem 3.5] Let G be a nilpotent group. Then the

following are equivalent.

1. There exists a vertex adjacent to all other vertices of Γ(G).

2. G ∼= Zp × Zq, where p and q are (not necessarily distinct) primes.

3. Γ(G) is complete.

2.2 Isolated Vertices and Connectedness of Γ(G)

In [6], authors mainly focussed on graphs Γ(G) with δ(Γ(G)) ≥ 1, i.e.,

graphs without isolated vertices. The only discussion on isolated vertices

appear in Remark 2.9 [6], where they characterized isolated vertices in the

case when G is abelian.

We start with some examples of Γ(G), both connected and disconnected.

Example 2.2.1 Consider the Klein-4 group, K4. Then the set of all proper

nontrivial subgroups is S = {H1 = {e, a}, H2 = {e, b}, H3 = {e, ab}}
and the corresponding Γ(K4) is given in Figure 2.1(A). Next, consider the

group S3. Then the set of all proper nontrivial subgroups is S = {H1 =

{e, (12)}, H2 = {e, (13)}, H3 = {e, (23)}, H4 = {e, (123), (132)}} and the

corresponding Γ(S3) is given in Figure 2.1(B).
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(A) Γ(K4)
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(B) Γ(S3)

Figure 2.1: Examples of Γ(G) (Connected Examples)

Example 2.2.2 Consider the Quaternion group, Q8 = ⟨a, b : a4 = e, a2 =

b2, ba = a3b⟩. Then the set of all proper nontrivial subgroups is S = {H1 =

⟨a2⟩, H2 = ⟨a⟩, H3 = ⟨ab⟩, H4 = ⟨b⟩} and the corresponding Γ(Q8) is given

in Figure 2.2(A). Next, consider the Dihedral group D8 = ⟨a, b : a4 =

e, b2 = e, ba = a3b⟩. Then the set of all proper nontrivial subgroups is

S = {H1 = ⟨a2⟩, H2 = ⟨b⟩, H3 = ⟨ab⟩, H4 = ⟨a2b⟩, H5 = ⟨a3b⟩, T1 = ⟨a⟩, T2 =

{e, a2, b, a2b}, T3 = {e, ab, a2, a3b}} and the corresponding Γ(D8) is given in

Figure 2.2(B).

H3

H2

H4

H1

(A) Γ(Q8)

T3

T1

T2

H3 H5 H2H4H1

(B) Γ(D8)

Figure 2.2: Examples of Γ(G) (Disconnected Examples)

□

Theorem 2.2.1 Let G be a finite group. If {e} ⊊ H ⊆ Φ(G), then H is an

isolated vertex in Γ(G). Conversely, if G is nilpotent and H is an isolated
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vertex in Γ(G), then H ⊆ Φ(G).

Proof : Let H be a non-trivial proper subgroup of G which is contained in

Φ(G). If possible, let H ∼ K in Γ(G) for some non-trivial proper subgroup

K of G. Then there exists a maximal subgroup M of G which contains K.

Thus, G = HK ⊆ HM = M ̸= G, a contradiction. Thus H is an isolated

vertex in Γ(G).

Conversely, let H be an isolated vertex in Γ(G). If possible, let M be

a maximal subgroup of G which does not contain H. As G is nilpotent,

by Proposition 2.1.1(3), M is a normal subgroup of G and hence HM is

a subgroup of G and M ⊊ HM . Thus, by maximality of M , we have

HM = G, i.e., H ∼ M in Γ(G), a contradiction. Thus H is contained in

every maximal subgroup of G, i.e., H ⊆ Φ(G). □

Remark 2.2.1 The above theorem proves that if the Frattini subgroup of

G is non-trivial, then Γ(G) is disconnected. It is to be noted that if G is

not nilpotent, triviality of the Frattini subgroup of G does not imply Γ(G)

is connected. For example, A4 is not nilpotent and Φ(A4) is trivial. But

Γ(A4) is the disjoint union of a star K1,4 and three isolated vertices. This

shows that solvability of G is not enough for the converse to hold. We can

even say something more: super-solvability is also not enough. Consider

the Frobenius group G = ⟨a, b : a5 = b4 = 1, ab = ba2⟩ of order 20. It is

super-solvable, non-nilpotent group with |Φ(G)| = 1, but it has five isolated

vertices.
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Theorem 2.2.2 Let G be a finite group. If G is a cyclic p-group, then Γ(G)

has no edges. Conversely, if G is a solvable group such that Γ(G) has no

edges, then G is a cyclic p-group.

Proof : IfG is a cyclic p-group, thenG ∼= Zpk and S = {⟨p⟩, ⟨p2⟩, · · · , ⟨pk−1⟩}
is the set of vertices of Γ(G). Clearly, all of the vertices are isolated in Γ(G).

For the other direction, since G is a solvable group, by a Theorem of Hall

(See [37], Theorem 5.28, pp. 108), G is the Zappa-Szep product of a Sylow

p-subgroup H and a Hall p′-subgroup K, i.e., G = HK and H ∩K = {e}.
If K is non-trivial, then we have an edge (H,K) in Γ(G). Thus K must be

trivial. Hence G is a finite p-group of order, say pn. By Sylow’s theorem,

G has a subgroup N of order pn−1 and N is normal in G. Let g ∈ G \ N

and A = ⟨g⟩. If A is a proper subgroup of G, then AN is a subgroup of G

containing N and pn−1 = |N | < |AN |, i.e., |AN | = pn, i.e., AN = G. Thus

we get an edge (N,A) in Γ(G), a contradiction. Hence A = G = ⟨g⟩, i.e.,
G is a cyclic p-group. □

Remark 2.2.2 The solvability of G is required for the converse to hold:

If G = PSL(2, 13), then Γ(G) is edgeless. In fact, there are more groups

for which Γ(G) is edgeless. In [28] authors shows that 15 of the 26 simple

sporadic groups does not admit a factorization. Thus for all these 15 groups,

co-maximal subgroup graph is edgeless. In the next theorem, we characterize

G for which Γ(G) is edgeless.

Lemma 2.2.3 Let G be a finite group such that Γ(G) is edgeless. If Φ(G)

is trivial, then G is simple.
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Proof : If possible, let H be a non-trivial proper normal subgroup of G. As

Φ(G) is trivial, there exists at least one maximal subgroup M of G which

does not contain H. Thus M is adjacent to H in Γ(G), a contardiction.

Hence G is simple. □

Theorem 2.2.3 Let G be a finite group. Then Γ(G) is edgeless if and only

if G/Φ(G) is simple and has no factorization.

Proof : Γ(G) is edgeless if and only if G has no factorization if and only if

|G| > |HK| for any two maximal subgroups H and K of G, i.e., [G : H] >

[K : H ∩K] for any two maximal subgroups H and K of G. Now, as Φ(G)

is contained in all maximal subgroups of G, we have G has no factorization

into maximal subgroups if and only if G/Φ(G) has no factorization, i.e,

Γ(G/Φ(G)) is edgeless. Also, as G/Φ(G) has trivial Fratinni subgroup,

from the previous lemma, we get G/Φ(G) is simple.

Conversely, let G/Φ(G) is simple and has no factorization. If possible,

let H be adjacent to K in Γ(G). Without loss of generality, we can take

both H and K to be maximal subgroups of G. Then Φ(G) ⊆ H,K and

hence (H/Φ(G))(K/Φ(G)) = G/Φ(G) is a factorization of G/Φ(G), a con-

tradiction. □

In Theorem 2.2 of [6], the authors proved that if Γ(G) has no isolated

vertices, then it is connected and its diameter is bounded above by 3. In

the next theorem, we discuss about the components of Γ(G), if Γ(G) has

isolated vertices.
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Theorem 2.2.4 Let G be a finite group such that G has a maximal subgroup

which is normal in G. Then Γ(G) is connected apart from some possible

isolated vertices. Moreover, the diameter of the component is less than or

equal to 4.

Proof : If G is a cyclic p-group, then Γ(G) is edgeless and hence the result

holds. So, we assume that G is not a cyclic p-group. Let H be a maximal

subgroup of G which is normal in G. As G is not a cyclic p-group, there

exists another maximal subgroup L of G. Thus HL = G and H ∼ L, i.e., H

is not an isolated vertex in Γ(G). Let C1 be the component of Γ(G) which

contains H. If possible, let there exists another component C2 of Γ(G) and

H ′ ∼ K ′ in C2.

If both H ′, K ′ ⊆ H, then H ′K ′ ⊆ H ̸= G, which contradicts that H ′ ∼
K ′. Thus, at least one of H ′ and K ′ is not contained in H. Let H ′ is

not contained in H. Then H ⊊ HH ′ = G and hence H ∼ H ′ in Γ(G).

This contradicts that H and H ′ are in different component of Γ(G). Hence,

our assumption is wrong and Γ(G) is connected apart from some possible

isolated vertices.

Now, we prove the upper bound for the diameter. If H is the only

maximal subgroup of G, then G is a cyclic p-group, and the resulting graph

Γ(G) is empty. So, we assume that there exist other maximal subgroups of

G, apart from H. Let A,B be two arbitrary vertices of the component. If

A,B ̸⊆ H, then we have A ∼ H ∼ B, i.e., d(A,B) ≤ 2.

If A ̸⊆ H and B ⊆ H, then as B is not an isolated vertex in the compo-
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nent, there exists a subgroup B′ of G such that B′ ∼ B in Γ(G). Clearly

B′ is contained in some maximal subgroup M of G, with M ̸= H. Thus

B ∼ M ∼ H ∼ A, i.e., d(A,B) ≤ 3.

Lastly, let us assume A,B ⊆ H. Clearly A ̸∼ B in Γ(G). As A and B

are not isolated vertices in the component, there exist subgroups A′ and B′

such that A ∼ A′ and B ∼ B′ in Γ(G). Again, A′ and B′ are contained in

some maximal subgroups MA and MB respectively, where H ̸= MA,MB. If

MA = MB, then A ∼ MA ∼ B, i.e., d(A,B) = 2. If MA ̸= MB, then we

have A ∼ MA ∼ H ∼ MB ∼ B, i.e., d(A,B) ≤ 4. □

Corollary 2.2.4 Let G be a finite nilpotent group. Then Γ(G) is connected

apart from some possible isolated vertices and the component has diameter

at most 3.

Proof : As every maximal subgroup in a finite nilpotent group G is normal

in G, by Theorem 2.2.4, Γ(G) is connected apart from some possible isolated

vertices. Now, we prove that the diameter of the unique connected compo-

nent of Γ(G) is less than or equal to 3. If G has a unique maximal subgroup,

then, by Lemma 2.1.1(1), G is a cyclic p-group and hence Γ(G) is edgeless.

So, we assume that G has at least two distinct maximal subgroups and we

denote the set of all maximal subgroups of G by M. Let H and K be two

vertices in the component of Γ(G). Then, H and K are not isolated vertices

and by Theorem 2.2.1, H,K ̸⊆ Φ(G), i.e., there exists maximal subgroups

M1 and M2 in M such that H ̸⊆ M1 and K ̸⊆ M2. If M1 = M2, then

M1 ⊊ HM1 = G = KM1 ⊋ M1 (since G is nilpotent and M1 is a maximal
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subgroup), i.e., we have a path H ∼ M1 ∼ K in Γ(G) and d(H,K) ≤ 2.

Similarly, if M1 ̸= M2, then we have a path H ∼ M1 ∼ M2 ∼ K, i.e.,

d(H,K) ≤ 3. Thus the diameter of the component of Γ(G) is less than or

equal to 3. □

Corollary 2.2.5 Let G be a finite solvable group. Then Γ(G) is connected

apart from some possible isolated vertices and the component has diameter

at most 4.

Proof : It suffices to prove that a finite solvable group G always have a

maximal subgroup which is normal in G. For finite groups, an equivalent

definition of solvability is as follows: A finite group G is solvable if there

are subgroups {e} = G0 ⊴ G1 ⊴ · · · ⊴ Gk−1 ⊴ Gk = G such that each

factors Gi+1/Gi is a cyclic group of prime order. So in particular, G/Gk−1

is a cyclic group of prime order. Hence Gk−1 is a maximal subgroup of G

which is normal in G. □

Remark 2.2.6 In Theorem 2.2.4, we have proved that if G has a maximal

subgroup which is normal in G, then the diameter of the connected compo-

nent is at most 4. However, we are yet to find an example of a group G,

where the diameter of the component is equal to 4.

Theorem 2.2.1 and Theorem 2.2.4, motivates us to put forward the next

definition.

Definition 2.2.1 Let G be a group. The deleted co-maximal subgroup graph

of G, denoted by Γ∗(G), is defined as the graph obtained by removing the
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isolated vertices from Γ(G).

Thus we have the immediate corollary:

Corollary 2.2.7 Let G be a finite solvable group. Then Γ∗(G) is con-

nected and diam(Γ∗(G)) ≤ 4. If G is nilpotent, then diam(Γ∗(G)) ≤ 3

and Γ∗(G) = Γ(G) if and only if Φ(G) is trivial.

Remark 2.2.8 There exists groups like Sn with n ≥ 5 which are not solv-

able but has a maximal subgroup An which is normal in Sn. Thus there

exists finite non-solvable groups G such that Γ∗(G) is connected. Presently,

authors are not aware of any finite non-solvable group G such that Γ∗(G)

is disconnected. Till now, no example of finite group G is known for which

Γ∗(G) is disconnected.

Let Γmax(G) be the induced subgraph of Γ(G) on the set of all maximal

proper subgroups of G. If H is not an isolated vertex in Γ(G), i.e., H is

a vertex in Γ∗(G), then any maximal subgroup of G containing H is at a

distance 2 from H in Γ(G). Thus each component of Γ∗(G) must contain

at least one maximal subgroup of G. Hence the number of components of

Γ∗(G) is bounded above by the number of maximal subgroups of G. Thus

the number of components of Γ∗(G) is bounded above by the number of

components of Γmax(G). On the other hand, let C be a component of Γ∗(G)

and M1,M2, . . . ,Mk be the maximal subgroups in C. Then M1,M2, . . . ,Mk

are also connected in Γmax(G). Thus the number of components of Γmax(G)

is bounded above by the number of components of Γ∗(G).

17



Thus we have the following theorem.

Theorem 2.2.5 The number of components of Γ∗(G) is equal to the number

of components of Γmax(G). In particular, Γmax(G) is connected if and only

if Γ∗(G) is connected.

2.3 Some Characterizations of Γ(G) and Γ∗(G)

In this chapter, we characterize some graph properties like completeness,

bipartiteness, girth etc. of Γ(G) and Γ∗(G). We note that authors in [6],

(See Theorem 3.5 in [6] or Theorem 2.1.4) proved that if G is nilpotent,

then Γ(G) has an universal vertex if and only if G ∼= Zp × Zq. In fact, we

characterize when Γ(G) and Γ∗(G) has an universal vertex, are complete,

are star graph etc.

Theorem 2.3.1 Γ(G) is a complete graph on more than one vertices if and

only if G ∼= Zp × Zq, where p and q are (not necessarily distinct) primes.

Proof : We first assume that G ∼= Zp × Zq. If p ̸= q, then Γ(G) ∼= Z2

and hence complete. If p = q, then G has exactly p+ 1 subgroups of order

p, say H1, H2, · · · , Hp+1 and no other proper nontrivial subgroups. Hence

S = {H1, H2, · · · , Hp+1}. Note that |HiHj| = |Hi||Hj |
|Hi∩Hj | = p2. Thus HiHj = G

for i ̸= j. Thus Γ(G) is a complete graph of order p+ 1.

Conversely, we assume that Γ(G) = Kn of order n > 2 and letH1, H2, · · · , Hn

be the subgroups of G which form a complete graph. Clearly, Hi ⊈ Hj
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and Hi ∩ Hj = {e} for all i, j with i ̸= j, because if Hi ⊆ Hj, then

HiHj ⊆ Hj ̸= G, i.e Hi is not adjacent to Hj which contradicts by our

assumption. Also, if Hi ∩ Hj = K ̸= {e}, then HiK ⊆ Hi ̸= G, i.e Hi is

not adjacent to K which contradicts by our assumption. Similarly Hi’s do

not have any proper subgroup and hence Hi’s are prime order subgroups of

G of order pi. Now as Hi is adjacent to Hj for all i, j with i ̸= j, we have

HiHj = G, i.e |G| = |Hi||Hj| = pipj for all i, j with i ̸= j. Thus all pi’s

equal, say pi = p for all i. Therefore, |G| = p2. So G = Zp2 or G = Zp×Zp.

Since Γ(G) has no isolated vertex, G is not cyclic. Hence G ∼= Zp × Zp and

n = p + 1, so p = n − 1 is a prime. If Γ(G) = K2, then it trivially follows

that G ∼= Zp × Zq, for distinct primes p and q. □

Theorem 2.3.2 Let G be a group of order n. Γ(G) is a star graph K1,p if

and only if G is a group of order n = pq, where p > q are distinct primes.

Proof : Let Γ(G) be a star K1,p, where H is the universal vertex and

K1, K2, · · · , Kp are leaves [see Figure 2.3]. If H has any proper nontrivial

subgroup L, then HL ̸= G. Therefore H is not adjacent to L. However as

H is a universal vertex, no such L exist. Thus H has no non-trivial proper

subgroup, it means H is a subgroup of prime order, say η. Also, we have

HKi = G, for all i = 1, 2, · · · , p. Thus n = |G| = |H||Ki|
|H∩Ki| = η|Ki|. Hence,

|Ki| = n
η , for all i = 1, 2, · · · , p.

Note that as all Ki’s are of the same order, they are not contained in

each other. Moreover, Ki’s can not have any non-trivial proper subgroups

(otherwise if L ⊊ Ki is a subgroup, then L must be adjacent to H, i.e., L =
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Kj. But that means |Ki| > |L| = |Kj| = |Ki|, a contradiction). Therefore,

Ki’s are prime order subgroups. Hence n
η is prime, say q. So n = qη. Note

that q ̸= η, as otherwise n = q2 and G = Zq2 or G = Zq × Zq. In none of

the case, Γ(G) is a star. Thus, G has p subgroups K1, K2, · · · , Kp each has

order q. By Sylow’s Theorem, the number of Sylow q-subgroups, nq is given

by p = nq = 1 + tq|η. Hence, p|η. So p = η and n = pq. Also, as K1 is not

adjacent to K2. we have K1K2 ̸= G. So, pq = |G| > |K1K2| = |K1||K2|
|K1∩K2| = q2.

It means p > q.

For the other direction, let G be a group of order pq, with p > q. Then

G ∼= Zpq or G ∼= Zp ⋊ Zq and q|(p− 1). In the first case, we get Γ(G) ∼= P2,

which is a star. In the second case, it is easy to see that G has a normal

subgroup H of order p and p subgroups K1, K2, · · · , Kp each has order q.

Now, it is easy to check that Γ(G) is a star with H as the universal vertex.

□

K2

H

KpK1

Figure 2.3: Γ(G) is a star graph K1,p

Remark 2.3.1 From [6] Theorem 6.2 and Theorem 2.3.2, it follows that

for a finite group G, Γ(G) is a star if and only if Γ(G) is a tree if and only

if G is group of order pq, where p and q are distinct primes.
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Theorem 2.3.3 Let G be a finite group. Then Γ(G) has an universal vertex

if and only if either G is non-cyclic abelian group of order p2 or G is group

of order pq, where p and q are distinct primes.

Proof : Let H be a non-trivial proper subgroup of G such that H is an

universal vertex in Γ(G). Clearly H is both maximal and minimal subgroup

in G, as otherwise H fails to be an universal vertex. Thus H is a prime

order subgroup of G of order, say p. Thus |G| = pm. Clearly m ̸= 1, i.e.,

|G| ̸= p, as in that case Γ(G) has no vertex.

If p|m, then H is contained in some Sylow p-subgroup K of G and hence

HK = K. If K ̸= G, then we get a contradiction as H is an universal

vertex in Γ(G). If K = G, then G is a p-group. Let |G| = pk. If k ≥ 4, then

G has a subgroup L of order p2 and it is easy to see that |HL| ≤ p3, i.e.,

H ̸∼ L in Γ(G), a contradiction. Thus |G| = p2 or p3. If G is cyclic, then,

by Theorem 2.2.2(1), Γ(G) is edgeless, a contradiction. Thus G is either a

non-cyclic abelian group of order p2 or a non-cyclic group of p3.

If G is a non-cyclic abelian group of order p2, then G ∼= Zp × Zp and

by Theorem 2.3.1, Γ(G) is a complete graph. If G is a non-cyclic group

of order p3, then there are exactly two non-abelian groups and two abelian

groups of order p3, upto isomorphism. We discuss each of these possibilities

separately:

Abelian Groups: In this case, G ∼= Zp × Zp × Zp or G ∼= Zp × Zp2.

In both cases, for every subgroup of order p, we can find another subgroup

of order p whose product is not equal to G, i.e., Γ(G) does not have any
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universal vertex.

Non-Abelian Groups: In this case, it is well known that the Frattini

subgroup of a non-abelian group of order p3 is non-trivial. Thus it always

have isolated vertices, a contradiction.

Next we consider the case when p ∤ m. If m has two distinct prime

factors q and r, then, by Cauchy’s theorem, there exist a subgroup K of

order q and |HK| = pq < pm. Even if m = qt where q is a prime and t ≥ 2,

we get a subgroup K of order q and |HK| = pq < pm. So only possibility

is m = q, i.e., |G| = pq. Let p > q. If q ∤ (p − 1), then G is cyclic and

Γ(G) ∼= K2. If q | (p− 1), then G is either cyclic or a non-abelian group of

order pq. In the latter case, G has unique normal subgroup H of order p

and all other vertices of Γ(G) are adjacent to H.

Combining all the cases, it follows that if Γ(G) has a universal vertex,

then either G is non-cyclic abelian group of order p2 or G is group of order

pq, where p and q are distinct primes.

The converse follows from Theorem 2.3.1 and Theorem 2.3.2. □

Theorem 2.3.4 Let G be a nilpotent group. Γ∗(G) is a star if and only if

either G is a group of order pq or the cyclic group of order prq, where p, q

are distinct primes and r ≥ 2 is an integer.

Proof : If G is a cyclic group of order prq, then G ∼= Zprq and Γ(G) is the

union of isolated vertices ⟨pq⟩, ⟨p2q⟩, . . . , ⟨pr−1q⟩ and a star, where ⟨q⟩ is the
universal vertex and ⟨p⟩, ⟨p2⟩, . . . , ⟨pr−1⟩ are the leaves. If G is a group of

order pq, then by Theorem 2.3.2, Γ(G) = Γ∗(G) is a star.
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Conversely, let G be a nilpotent group such that Γ∗(G) is a star. Then

two cases may occur.

Case 1. Γ(G) = Γ∗(G): Then by Theorem 2.3.2, G is a group of order

n = pq.

Case 2. Γ(G) ̸= Γ∗(G): This means Γ(G) has at least one isolated

vertex. Let H be the universal vertex of the star Γ∗(G) and K1, K2, . . . , Kt

be the leaves of the star.

Claim 1: H is a maximal subgroup of G: If it is not, then there exists a

subgroup L of G such that H ⊊ L ⊊ G. However, this impies G = HKi ⊊

LKi, i.e., LKi = G, i.e., H ̸= L and L ∼ Ki for i = 1, 2, . . . , t, which

contradicts that it is a star.

Claim 2: G is a cyclic group: If G has a unique maximal subgroup H,

then by Lemma 2.1.1(1), G is a cyclic p-group, which implies that Γ(G) is

edgeless, a contradiction. Thus G has at least one maximal subgroup M ,

other than H. As G is nilpotent, both H and M , being maximal subgroups,

are normal in G and H ⊊ HM = G, i.e., H ∼ M in Γ(G). However, this

means M = Ki for some i ∈ {1, 2, . . . , t}. Now, choose a ∈ G \ (H ∪ M)

(note that G ̸= H ∪M) and set A = ⟨a⟩. If A is a proper subgroup of G,

then M ⊊ MA = G, i.e., Ki = M ∼ A. Now, as Ki is a leaf, A must be

the universal vertex H, i.e., A = H. However, as a /∈ H, we have A ̸= H,

a contradiction. Hence, A is not a proper subgroup of G, i.e., A = G = ⟨a⟩
is cyclic.

Let |G| = p1
α1p2

α2 · · · pkαk . If k ≥ 3, then we get a clique of size k,
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namely ⟨p1⟩, ⟨p2⟩, . . . , ⟨pk⟩, a contradiction. Also k = 1 implies that Γ(G) is

edgeless. Thus k = 2, i.e., |G| = p1
α1p2

α2. If possible, let both α1,α2 ≥ 2.

Then, we get a 4-cycle, namely ⟨p1⟩, ⟨p2⟩, ⟨p21⟩, ⟨p22⟩, a contradiction. If both

α1 = α2 = 1, then Γ(G) ∼= K2, i.e., without any isolated point. Thus, |G| is
of the required form. □

Theorem 2.3.5 Let G be a nilpotent group. Γ∗(G) is a complete graph if

and only if either G is isomorphic to Zp × Zp or Q8.

Proof : If G ∼= Zp × Zp or Q8, then the result follows from Theorem 2.3.1

and Figure 2.2(A).

Conversely, let Γ∗(G) be a complete graph. If Γ(G) = Γ∗(G), then by

Theorem 2.3.1, G ∼= Zp ×Zp for some prime p. So, we assume that Γ(G) ̸=
Γ∗(G), i.e., Γ(G) has at least one isolated vertex. Then by Theorem 2.2.1(2),

the Frattini subgroup of G, Φ(G) is non-trivial. Let H1, H2, . . . , Hn be the

vertices of Γ∗(G).

Claim 1: Each Hi is a maximal subgroup of G.

Proof of Claim 1: Let there exists a proper subgroup L with Hi ⊊ L.

As Hi ∼ Hj in Γ∗(G), we have LHj ⊋ HiHj = G, i.e. L ∼ Hj, i.e., L

is a vertex of Γ∗(G). But LHi ⊊ L ̸= G, which contradicts that Γ∗(G) is

complete. Hence Hi is a maximal subgroup of G.

Thus, all the maximal subgroups of G are vertices of Γ∗(G) and there

exists at least two maximal subgroups of G. If the number of maximal

subgroups is exactly 2, then by Proposition 2.1.1(2), G ∼= Zpaqb. Now as

Γ(G) has at least one isolated vertex, we have ab > 1, i.e., either a > 1 or
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b > 1. Suppose a > 1. Then ⟨p2⟩ is not an isolated vertex and ⟨p⟩ ̸∼ ⟨p2⟩
in Γ(G). This contradicts that Γ∗(G) is complete. Thus the number of

maximal subgroups of G is at least 3.

Claim 2: Each Hi is cyclic.

Proof of Claim 2: Let a ∈ Hi \ Φ(G) and A = ⟨a⟩. If A ⊊ Hi, then we

get a proper subgroup of G which is not contained in Φ(G). Thus A is a

vertex of Γ∗(G). But AHi ⊆ Hi ̸= G, i.e., A ̸∼ Hi, which contradicts that

Γ∗(G) is complete. Thus A = Hi = ⟨a⟩, i.e., Hi is cyclic.

As all the maximal subgroups of G are cyclic, it follows that all subgroups

ofG are cyclic. Next we prove that all non-maximal subgroups are contained

in Φ(G).

Claim 3: Any proper subgroup of Hi is contained in Φ(G).

Proof of Claim 3: If possible, let there exists a subgroup L of G such

that Φ(G) ⊊ L ⊊ Hi. Then L is a vertex of Γ∗(G) and LHi ⊆ Hi ̸= G, i.e.,

L ̸∼ Hi, a contradiction, as Γ∗(G) is complete.

As Φ(G) is normal in G, it is also normal in each Hi. Now, it follows

from the above claim that Hi/Φ(G) has no non-trivial proper subgroup, i.e.,

|Hi/Φ(G)| = pi, for some prime pi, for i = 1, 2, . . . , n.

Now, as Hi ∼ Hj in Γ∗(G), we have HiHj = G, i.e.,

|G| = |HiHj| =
|Hi||Hj|
|Hi ∩Hj|

=
pi|Φ(G)| · pj|Φ(G)|

|Φ(G)| = pipj|Φ(G)|.

Since G has at least 3 maximal subgroups, we have pi = pj = p(say) for

all i, j ∈ {1, 2, . . . , n}. Hence |G| = p2|Φ(G)| and |Hi| = p|Φ(G)|, i.e.,
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|G/Φ(G)| = p2. Hence, by Proposition 2.1.1(4), G is a p-group. Let |G| =
pk. Then |Hi| = pk−1.

Now, we try to classify the group G. If G is abelian, then as G has cyclic

subgroups of order pk−1, we have G ∼= Zpk or Zpk−1 × Zp. The former can

not hold as in that case Γ(G) is edgeless. Thus G ∼= Zpk−1 × Zp. However,

⟨p⟩×Zp, being a subgroup of order pk−1 of Zpk−1×Zp, is a maximal subgroup

which is not cyclic, a contradiction. Thus G ̸∼= Zpk−1 × Zp.

Hence G is a non-abelian group of order pk. Then G is a minimal non-

cyclic p-group. Thus, by Theorem 2.1.1, G is isomorphic to Q8. (As G is a

non-abelian p-group, other two cases do not occur.) □

Theorem 2.3.6 Let G be a finite nilpotent group. Γ∗(G) has an universal

vertex if G is isomorphic to one of the following groups:

1. Zprq, where p, q are distinct primes.

2. Zp ⋊ Zq, where p, q are distinct primes and q|p− 1.

3. Zpn−1 × Zp, where p is a prime.

4. Mpn = ⟨a, b : apn−1

= bp = e; b−1ab = a1+pn−2⟩, where p is a prime.

5. D2n = ⟨a, b : a2n−1

= b2 = e; bab = a−1⟩.

6. Q2n = ⟨a, b : a2n−1

= e; b2 = a2
n−2

; b−1ab = a−1⟩.

7. SD2n = ⟨a, b : a2n−1

= b2 = e; bab = a−1+2n−2⟩.
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Proof : Let Γ∗(G) has an universal vertex. If Γ∗(G) = Γ(G), then G is as

described in Theorem 2.3.3. If Γ∗(G) ̸= Γ(G), then Φ(G) is non-trivial. Let

H be an universal vertex of Γ∗(G).

Claim 1: H is a maximal subgroup.

Proof of Claim 1: If not, then there exists a proper subgroup L with H ⊊

L ̸= G. Then HL = L ̸= G, i.e., contradicting that H is an universal

vertex, unless L is an isolated vertex of Γ(G). However, in that case, H ⊊

L ⊆ Φ(G), a contradiction.

Claim 2: H is cyclic.

Proof of Claim 2: If G has exactly one maximal subgroup H, then G is a

cyclic p-group and hence Γ∗(G) is an empty graph. Thus G has at least two

maximal subgroups and hence Φ(G) ⊊ H. Let a ∈ H \Φ(G). Then ⟨a⟩ ⊆ H

and ⟨a⟩ ̸⊆ Φ(G). If ⟨a⟩ is a proper subgroup of H, then ⟨a⟩H = H ̸= G,

i.e., ⟨a⟩ ̸∼ H in Γ∗(G), a contradiction. Thus H = ⟨a⟩.
Note that all subgroups of H are contained in Φ(G), i.e., H/Φ(G) has no

non-trivial proper subgroups. This implies that H/Φ(G) is a cyclic group

of prime order, say p. Then |H| = p|Φ(G)|.
Also note that all elements in H \Φ(G) are generators of the cyclic group

H. Thus by equating the number of generators of a finite cyclic group, we

get

|H|− |Φ(G)| = φ(|H|), i.e., (p− 1)|Φ(G)| = φ(|H|), (2.1)

where φ denote the Euler’s totient function.

Claim 3: Intersection of any maximal subgroup of G with H is Φ(G).
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Proof of Claim 3: Let K be a maximal subgroup of G other than H. Then

H ∩ K ⊊ H. As proper subgroups of H are contained in Φ(G), we have

H ∩ K ⊆ Φ(G). On the other hand, Φ(G) being the intersection of all

maximal subgroups is contained in H ∩K. Thus H ∩K = Φ(G).

Thus, the intersection number of G, ι(G) = 2. As G is nilpotent, by

Theorem 4.7 of [41], we have

2 = ι(G) =
kX

i=1

ι(Pi) =
kX

i=1

ri,

where π(G) = {p1, p2, . . . , pk} and Pi is a Sylow pi-subgroup of G with rank

ri. As the only partitions of 2 are 1 + 1 and 2 + 0, |π(G)| ≤ 2.

Case 1: 2 = 1 + 1. In this case, π(G) = {p, q} and |G| = paqb and

G ∼= P × Q, where P,Q are Sylow p and q subgroups of G respectively of

rank 1 each, i.e., |P/Φ(P )| = p and |Q/Φ(Q)| = q. Thus

|G/Φ(G)| = |G|
|Φ(G)| =

|P ×Q|
|Φ(P )× Φ(Q)| = |P/Φ(P )||Q/Φ(Q)| = pq,

i.e., |Φ(G)| = pa−1qb−1 and |H| = paqb−1. Thus, if b > 1, from Equation 2.1,

we get

(p− 1)pa−1qb−1 = φ(paqb−1) ⇒ q = q − 1, a contradiction.

Thus, the only possibility is b = 1, i.e., |G| = paq, |H| = pa, |Φ(G)| = pa−1.

Moreover, as Φ(G) is non-trivial, we have a ≥ 2. Also, as H is a maximal

subgroup of a nilpotent group G, H is normal in G. Hence, H = P is
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the unique Sylow p-subgroup of G and G ∼= H × Q, where Q is the Sylow

q-subgroup of G of order q. Thus G is a cyclic group of order paq, i.e.,

G ∼= Zpaq, with a ≥ 2.

Case 2: 2 = 2 + 0. In this case, G is a p-group, i.e., say |G| = pn and

|H| = pn−1,Φ(G) = pn−2. Moreover G can not be cyclic, as in that case

Γ∗(G) will be null graph. Thus, G is a non-cyclic p-group with a cyclic

subgroup of index p. Then by Theorem 1.2 [16], G is isomorphic to one of

the following groups:

• Zpn−1 × Zp

• Mpn = ⟨a, b : apn−1

= bp = e; b−1ab = a1+pn−2⟩

• D2n = ⟨a, b : a2n−1

= b2 = e; bab = a−1⟩

• Q2n = ⟨a, b : a2n−1

= e; b2 = a2
n−2

; b−1ab = a−1⟩

• SD2n = ⟨a, b : a2n−1

= b2 = e; bab = a−1+2n−2⟩.

The converse part follows immediately from the following observations:

• Zpn−1 × {[0]} is an universal vertex in Γ∗(G), when G ∼= Zpn−1 × Zp.

• ⟨a⟩ is an universal vertex in Γ∗(G), when G ∼= Mpn, D2n−1, Q2n or SD2n.

□

Corollary 2.3.2 Let G be a finite nilpotent group. The domination number

of Γ∗(G) is 1 if and only if G is one of the groups mentioned in Theorem

2.3.6. □

29



Theorem 2.3.7 Let G be a finite nilpotent group. Then Γ(G) is bipartite

if and only if G is a cyclic group of order pa or paqb, where p, q are distinct

primes.

Proof : By Theorem 2.2.4, it follows that Γ(G) is connected, except a few

possible isolated vertices. As isolated vertices does not affect the bipartite-

ness of a graph, we ignore the isolated vertices. If G has a unique maximal

subgroup, then G is cyclic p-group and Γ(G) is edgeless and hence bipartite.

If G has at least 3 maximal subgroups, say M1,M2 and M3, then, as G

is nilpotent, we have M1M2 = M2M3 = M3M1 = G, i.e., we get a 3-cycle

M1 ∼ M2 ∼ M3 ∼ M1. Hence Γ(G) is non-bipartite.

So we assume that G has exactly two maximal subgroups M1 and M2.

Then, by Proposition 2.1.1(2), G is a cyclic group of paqb, where p, q are dis-

tinct primes, i.e., G ∼= Zpaqb. Then the vertices of Γ∗(G) can be partitioned

into two partite sets V1 = {⟨p⟩, ⟨p2⟩, . . . , ⟨pa⟩} and V2 = {⟨q⟩, ⟨q2⟩, . . . , ⟨qb⟩},
thereby making it bipartite. □

Theorem 2.3.8 Let G be a finite nilpotent group. Then

girth(Γ∗(G)) =





∞, if G ∼= Zpa or Zpaq, where a ≥ 1

4, if G ∼= Zpaqb, where a, b ≥ 2 p, q are distinct primes.

3, otherwise.

.

Proof : By Corollary 2.2.7, it follows that Γ∗(G) is connected. If G has a

unique maximal subgroup, then G is cyclic p-group and Γ(G) is edgeless.
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If G has at least three maximal subgroups, say M1,M2 and M3, then, as

G is nilpotent, we have M1M2 = M2M3 = M3M1 = G, i.e., we get a 3-cycle

M1 ∼ M2 ∼ M3 ∼ M1. Hence girth of Γ∗(G) is 3.

So we assume that G has exactly two maximal subgroups M1 and M2.

Then by Proposition 2.1.1(2), G ∼= Zpaqb and by Theorem 2.3.7, Γ∗(G) is

bipartite. If any of a or b is 1, then Γ(G) is a star and has no cycle, i.e.,

girth of Γ(G) is ∞. If both a, b ≥ 2, then we have the 4-cycle ⟨p⟩ ∼ ⟨q⟩ ∼
⟨p2⟩ ∼ ⟨q2⟩ ∼ ⟨p⟩ in Γ∗(G) and hence girth of Γ∗(G) is 4. □

2.4 Independence Number and Chromatic Number of

Γ(G)

In this section, we study the independence number α and chromatic number

χ of Γ(G) and prove that Γ(G) is weakly perfect.

Lemma 2.4.1 Let G be a finite group with at most 7 non-trivial proper

subgroups. Then G is supersolvable.

Proof : If G is nilpotent, then G is supersolvable. Thus we assume that

G is not nilpotent. As every finite group whose all Sylow subgroups are

cyclic is supersolvable (Theorem 10.1.10 [36]), it suffices to show that all

Sylow subgroups of G are cyclic. Moreover, as G is not nilpotent, G is not a

p-group, i.e., π(G) ≥ 2 i.e., there exists two distinct primes p and q dividing

|G|. Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. If

possible, let P be a non-cyclic group. Then P has at least 3 non-trivial

31



proper subgroups, say P1, P2, P3.

Case 1: (np(G), nq(G) > 1) If |π(G)| = 2, then np(G) + nq(G) ≥ 5.

(If |π(G)| = 2, then both np(G), nq(G) can not be simultaneously equal to

2.) Also P has 3 non-trivial proper subgroups, thereby making the number

of proper subgroups of G to 8, a contradiction. If If |π(G)| ≥ 3, then

np(G) + nq(G) ≥ 4 and let r be another element of π(G) other than p and

q. Then Sylow r-subgroup and three subgroups of P , take the total count

to at least 8, a contradiction.

Case 2: (np(G) = 1, nq(G) > 1) In this case, P is a normal subgroup

of G and H = PQ is a subgroup of G. As nq(H) divides |P |, we have

nq(H) = 1 or nq(H) = ps for some positive integer s. If nq(H) = 1, then Q

is normal in H and P,Q, P1, P2, P3, P1Q,P2Q,P3Q are 8 distinct subgroups

of H, a contradiction. If nq(H) = p, then p = 1 + ql for some integer l,

i.e., q|p − 1 and so p > q ≥ 2, i.e, p ≥ 3. Now as nq(G) > 1, therefore

nq(G) = 1+ qt ≥ 3, i.e., G has at least 3 Sylow q-subgroups. Also P , being

a non-cyclic p-group has at least p + 1 non-trivial proper subgroups. Thus

G has at least 8 proper non-trivial subgroups, namely P , at least p+ 1 ≥ 4

non-trvial proper subgroups of P and at least 3 Sylow q-subgroups of G, a

contradiction.

Case 3: (np(G) > 1, nq(G) = 1) Proof is similar to Case 2.

Case 4: (np(G) = nq(G) = 1) In this case, both P and Q are normal

in G. Then P,Q, P1, P2, P3, P1Q,P2Q,P3Q are 8 distinct subgroups of G, a

contradiction.
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Combining all the cases, we see that all the Sylow subgroups are cyclic

and hence G is supersolvable. □

Theorem 2.4.1 Let G be a finite group such that α(Γ(G)) ≤ 8. Then G is

solvable.

Proof : As α(Γ(G)) ≤ 8, every maximal subgroup M of G contains at

most 7 proper non-trivial subgroups (otherwise M along with its proper

non-trivial subgroups forms an independent set of size more than 8). Thus,

by Lemma 2.4.1, M is supersolvable. Thus every maximal subgroup of G

is supersolvable and hence, by Theorem 10.3.4 [36], G is solvable. □

Remark 2.4.2 Thus for every finite non-solvable group G, Γ(G) has inde-

pendence number at least 9.

It was proved in Theorem 6.4, [6] that if G be a finitely generated nilpo-

tent group, then the clique number ω(Γ(G)) = χ(Γ(G)) = |Max(G)|, i.e.,
Γ(G) is weakly perfect. The authors in [6] also raised the question that

whether Γ(G) is weakly perfect for all finite groups G. We answer this

question assertively.

Theorem 2.4.2 Let G be a finite group. Then Γ(G) is weakly perfect.

Proof : For any finite graph, the chromatic number is at least as large as

the clique number. Thus it suffices to show that χ(Γ(G)) ≤ ω(Γ(G)). Let

S = {H1, H2, . . . , Hω} be a maximum clique of Γ(G). As no two of them are

simultaneously contained in any maximal subgroup, without loss of general-

ity, we can assume each Hi to be maximal subgroups. Thus |Max(G)| ≥ ω.
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We now assign the colour 1 to H1 and all proper subgroups of H1. Then

we assign the colour 2 to H2 and all proper subgroups of H2 which are not

contained in H1. Proceeding this way, for each i = 1, 2, . . . ,ω, we assign

the colour i to Hi and all proper subgroups of Hi which are not contained

in Hj, for j < i.

Note that Max(G) may contain maximal subgroups other than those in

S. Let M ∈ Max(G) \ S. Thus M is not adjacent to some Hi. Then

we assign the colour i to Mi and all of its subgroups which have not been

coloured previously. We repeat this process until all maximal subgroups

are coloured. It is easy to see that all subgroups receive some colour and it

forms a proper colouring of Γ(G). Thus χ(Γ(G)) ≤ ω(Γ(G)). Hence Γ(G)

is weakly perfect. □

2.5 Perfectness of Γ(G)

The authors in [6] mentioned that by using similar arguments to that of

weak perfectness, it can be proved that Γ(G) is perfect. However, note

that Γ(G) may not be perfect, even if G is a finite cyclic group. In fact, it

has been proved in the next chapter that Γ(Zn) is perfect if and only if n

has atmost 4 distinct prime factors. In this section, we show that certain

families of groups yield perfect graphs. Before that we recall the definition

of perfectness of a graph. A graph G is called perfect if for all induced

subgraphs H of G, ω(H) = χ(H). The strong perfect graph theorem states

that a graph G is perfect if and only if G and its complement does not have
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induced odd cycle of length greater than or equal to 5. This result will be

extensively used in this section.

Lemma 2.5.1 Let G be a finite group and H be a subgroup with normal

complement in G. If Γ(G) is perfect, then Γ(H) is perfect.

Proof : Let K be a normal complement of H in G, i.e., K ◁G,HK = G

and H ∩ K is trivial. Suppose Γ(H) is not perfect. Then either Γ(H)

or Γc(H) has an induced odd cycle of length ≥ 5. Suppose Γ(H) has an

induced odd cycle C of length 2t + 1, namely H1 ∼ H2 ∼ · · ·H2t+1 ∼ H1,

where Hi’s are non-trivial proper subgroups of H. Then H1K ∼ H2K ∼
· · ·H2t+1K ∼ H1K is an induced odd cyle in Γ(G), a contradiction. (Note

that the adjacency follows from normality of K in G and all HiK’s are

distinct proper subgroups of G.) Similarly, it can be shown that Γc(H) has

no induced odd cycle of length ≥ 5. Hence Γ(H) is perfect. □

Theorem 2.5.1 If G is a group of order p2q2, then Γ(G) is perfect

Proof : We first consider the case when |G| = 36 = 22 · 32. There are 15

non-isomorphic groups of order 36 and each of them has been checked in

Sagemath to yield perfect comaximal subgroup graph. So, we focus on the

case when |G| ̸= 36. Without loss of generality, let p > q. We first show

that Γ(G) has no induced odd cycle of length ≥ 5. Suppose, Γ(G) has an

induced odd cycle C : H1 ∼ H2 ∼ · · ·Ht with t ≥ 5.

Claim 1: C has no subgroup of order q.

Proof of Claim: Let |H1| = q. Then, as Ht ∼ H1 ∼ H2, we have
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|H2| = |Ht| = p2q. However, |H2Ht| ≥ p4q2/p2 = p2q2 = |G|, i.e., H2 ∼ Ht,

a contradiction, as C is chordless.

The above argument also shows that C can have at most two subgroups

of order p2q, in which case they must be adjacent. However, we make a

stronger claim.

Claim 2: C has no subgroup of order p2q.

Proof of Claim: Let |H1| = p2q. Now, H3, H4 ̸∼ H1 and H3 ∼ H4. As

H3, H4 ̸∼ H1, |H3|, |H4| can not be pq2 or q2. Thus |H3|, |H4| ∈ {p, pq, p2}.
As H3 ∼ H4, we must have |H3| = |H4| = pq and |H3 ∩H4| = 1. Again as

H3, H4 ̸∼ H1, we have H3, H4 ⊆ H1. But this implies that H3H4 ⊆ H1 ̸= G,

i.e., H3 ̸∼ H4, a contradiction. Thus C has no subgroup of order p2q.

Claim 3: C has no subgroup of order q2.

Proof of Claim: Let |H1| = q2. In light of Claim 2, we must have

|H2| = |Ht| = p2. However, unless |G| = 36, any group of order p2q2

with p > q has a unique Sylow p subgroup of order p2. Thus H2 = Ht, a

contradiction.

Claim 4: C has no subgroup of order pq2.

Proof of Claim: Let |H1| = pq2. Unless p = 3 and q = 2, i.e., |G| = 36,

H1 contains a unique subgroup of order p. Now, as H3, H4 ̸∼ H1 and

H3 ∼ H4, both |H3|, |H4| can not be p or p2. If |H3| = p, then |H4| = pq2

and |H3 ∩ H4| = 1. Again, as H1 ̸∼ H3, we have H3 ⊆ H1, i.e., H3 is

the unique subgroup of order p in H1. Also, as H1 ̸∼ H4, comparing their

orders, we must have |H1 ∩ H4| = p or pq. In any case, H4 contains a
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subgroup of order p, i.e, H3. This contradicts that |H3 ∩H4| = 1. Thus C

does not contain any subgroup of order p. Similarly it can be shown that

C does not contain any subgroup of order p2. Thus |H3|, |H4| ∈ {pq, pq2}.
This gives rise to four cases, namely (|H3|, |H4|) = (pq, pq), (pq, pq2), (pq2, pq)

and (pq2, pq2). Using the fact that H1 contains a unique subgroup of order

p, in all the above cases, we get a contradiction. Hence C has no subgroup

of order pq2. Hence Claim 4 holds.

Using all the above claims, it also follows that C does not contain any

subgroup of order p or p2. Thus all the vertices in C must be subgroups of

order pq.

Claim 5: No subgroup in C is cyclic.

Proof of Claim: If possible, let H1 be a cyclic group of order pq. So,

it has a unique subgroup of order p and a unique subgroup of order q.

As H1 ̸∼ H3, we must have |H1 ∩ H3| = p or q. Suppose |H1 ∩ H3| = p.

Similarly, H1∩H4 is non-trivial. However, if |H1∩H4| = p, then both H3, H4

contains that unique subgroup of order p. But thus impliesH3 ̸∼ H4. Hence,

|H1∩H4| = q. Proceeding in this manner, we get |H1∩H5| = p, |H1∩H6| =
q, . . . , |H1 ∩Ht| = p. But this implies H1 ̸∼ Ht. Hence, Claim 5 holds.

Thus all the vertices in C must be non-abelian subgroups of order pq and

hence q|(p − 1), i.e., each Hi is generated by two elements, one of order p

and one of order q. Also note that adjacent vertices in C intersect trivially

and non-adjacent vertices in C intersect in a subgroup of order p or q.

Claim 6: Any two adjacent vertices in C can not both intersect in a
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subgroup of order p with any other vertex of C.

Proof of Claim: Let |H1| = |H3| = |H4| = pq with |H1∩H3| = |H1∩H4| =
p and |H3 ∩H4| = 1. As p > q, H1 contains a unique subgroup K of order

p and hence K ⊆ H3, H4, contradicting that H3 ∼ H4.

If the unique Sylow p subgroup P of G is cyclic, then G has a unique

subgroup, say K, of order p. Thus K is contained in all subgroups in C,

which contradicts that H1 ∼ H2 in C. So, we assume that the unique

Sylow p subgroup P of G is not cyclic, i.e., P ∼= Zp × Zp. Again, if G is

nilpotent, then all vertices in C are nilpotent groups of order pq, i.e., all the

vertices in C are cyclic subgroups of G, contradicting Claim 5. Thus G is a

non-nilpotent group with a unique Sylow p subgroup P , with P ∼= Zp ×Zp.

Claim 7: Any two adjacent vertices in C can not both intersect in a

subgroup of order q with any other vertex of C which is not adjacent to

both.

Proof of Claim: Let H1 ̸∼ Hm, Hm+1 and, if possible, |H1 ∩ Hm| =

|H1 ∩ Hm+1| = q. Also, we have |H1 ∩ H2| = |Hm ∩ Hm+1| = 1. Let

H1 = ⟨a1, b1⟩ and H2 = ⟨a2, b2⟩ where ◦(ai) = p, ◦(bi) = q for i = 1, 2

and |⟨a1⟩ ∩ ⟨a2⟩| = 1 = |⟨b1⟩ ∩ ⟨b2⟩| and H1H2 = G = ⟨a1, a2, b1, b2⟩. Thus

any element of G can be expressed uniquely in the form ai1a
j
2b

k
1b

l
2 where

0 ≤ i, j ≤ p− 1 and 0 ≤ k, l ≤ q − 1.

As |H1∩Hm| = q, without loss of generality, we can assumeHm = ⟨a3, b1⟩,
where ◦(a3) = p and |⟨a1⟩∩ ⟨a3⟩| = 1. Similarly, as |H1∩Hm+1| = q, we can

assume Hm+1 = ⟨a4, ai1bj1⟩, where ◦(a4) = p, ◦(ai1bj1) = q and |⟨a3⟩ ∩ ⟨a4⟩| =
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|⟨a1⟩ ∩ ⟨a4⟩| = 1. Now G = HmHm+1 = ⟨a3, a4, b1, ai1bj1⟩ = ⟨a3, a4, b1, ai1⟩.
Note that as |⟨a3⟩ ∩ ⟨a4⟩| = 1, we have ⟨a3, a4⟩ = P , the unique Sylow p

subgroup of G. Thus a1, being an element of order p, belongs to ⟨a3, a4⟩.
Hence G = ⟨a3, a4, b1⟩, i.e., G is generated by two elements of order p and

an element of order q. This contradicts that |G| = p2q2. Hence Claim 7

holds.

By Claim 7, there exists a pair of non-adjacent vertices in C which inter-

sect in a subgroup of order p. Without loss of generality, let |H1 ∩H3| = p.

Then. by Claim 6, we must |H1 ∩ H4| = q. Again, by Claim 7, we get

|H1 ∩ H5| = p. Continuing in this way, we get |H1 ∩ Ht| = p. But this

contradicts that H1 ∼ Ht. Thus Γ(G) does not have an induced odd cycle

C : H1 ∼ H2 ∼ · · ·Ht with t ≥ 5. Similarly, it can be proved that Γc(G)

does not have an induced odd cycle of length ≥ 5. Hence the theorem holds.

□

Theorem 2.5.2 If G is a group of order p2qr with p > q > r, then Γ(G) is

perfect.

Proof : We first show that Γ(G) has no induced odd cycle of length ≥ 5.

Suppose, Γ(G) has an induced odd cycle C : H1 ∼ H2 ∼ · · ·Ht with t ≥ 5.

As subgroups of G are of orders p, p2, q, r, pq, pr, qr, p2q, p2r, pqr, we show

that none of them can lie on C.

Claim 1: C has no subgroup of order p2q.

Proof of Claim: Let |H1| = p2q. Then, H1 is a maximal subgroup of

G such that H1 ◁ G. As H3, H4 ̸∼ H1, we must have H3, H4 ⊂ H1. This
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implies that H3 ̸∼ H4, a contradiction. Thus C has no subgroup of order

p2q. As subgroups of order r can only be adjacent to subgroups of order

p2q, C also has no subgroup of order r.

Claim 2: C has no subgroup of order p2r.

Proof of Claim: Let |H1| = p2r. As H3, H4 ̸∼ H1, q does not divide |H3|
and |H4|, i.e., q does not divide |H3H4|. This impplies that H3 ̸∼ H4, a

contradiction. Thus C has no subgroup of order p2r. As subgroups of order

q can only be adjacent to subgroups of order p2r, C also has no subgroup

of order q.

Claim 3: C has no subgroup of order p2.

Proof of Claim: Let |H1| = p2. AsH2, Ht ∼ H1, we must have |H2|, |Ht| ∈
{qr, pqr}. Also, as H3, H4 ̸∼ H1, qr does not divide |H3| and |H4|. Thus

|H3|, |H4| ∈ {p, p2, pq, pr}. Again, as H3 ∼ H4, we get |H3|, |H4| ̸= p, p2,

and hence without loss of generality, |H3| = pq, |H4| = pr, · · · , |Ht−1| = pr.

As H2 ∼ H3 and Ht−1 ∼ Ht, we get |H2| = |Ht| = pqr and |H1 ∩H2| =
|H1 ∩Ht| = p. Again, since H3 ̸∼ Ht, we have |H3 ∩Ht| = p. As p > q > r,

H2, Ht, being subgroups of order pqr, has a unique subgroup P of order p,

i.e., P ⊆ H1, H2, H3, Ht. In particular, P ⊆ H2∩H3, i.e, p divides |H2∩H3|.
On the other hand, as H2 ∼ H3, we must have |H2∩H3| = q,a contradiction.

Thus Claim 3 holds.

As subgroups of order qr can be adjacent only to subgroups of order

p2, p2q, p2r, none of which are in C, C does not have any subgroup of order

qr.
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Claim 4: C has no subgroup of order pqr.

Proof of Claim: Let |H1| = pqr. Then |H2|, |Ht| ∈ {p, pq, pr, pqr}. Note

that in any case, p divides |H1 ∩ H3| and |H1 ∩ H4|. As H1 has a unique

Sylow p subgroup P , P ⊆ H3, H4, i.e., p divides |H3∩H4|. This contradicts
that H3 ∼ H4. Thus Claim 4 holds. As subgroups of order p can be adjacent

only to subgroups of order pqr, C does not have any subgroup of order p.

Thus C can have subgroups of order pq and pr, and they must alternate

in the cycle for adjacency. However as C is an odd cycle, this can not

occur. Thus Γ(G) has no induced odd cycle of length ≥ 5. Similarly, it can

be shown that Γc(G) has no induced odd cycle of length ≥ 5. Thus Γ(G) is

perfect. □

Theorem 2.5.3 If G is a group of order pqrs, then Γ(G) is perfect.

Proof : We first show that Γ(G) has no induced odd cycle of length ≥ 5.

Suppose, Γ(G) has an induced odd cycle C : H1 ∼ H2 ∼ · · ·Ht with t ≥ 5.

Claim 1: C has no subgroups of order pqr, pqs, prs, qrs.

Proof of Claim: Let |H1| = pqr. As H3, H4 ̸∼ H1, s does not divide

|H3|, |H4|. Hence H3 ̸∼ H4, a contradiction. Similarly it can be shown that

C has no subgroups of order pqs, prs, qrs.

From Claim 1, it follows that C has no subgroups of order p, q, r or

s. Thus only possible orders of subgroups in C are pq, pr, ps, qr, qs, rs.

Suppose |H1| = pq. Then, as H1 ∼ H2, we must have |H2| = rs. Similarly,

|H3| = pq, |H4| = rs and so on, i.e., subgroups of order pq and rs must

alternate in C. But this contradicts that C is an odd cycle. Thus Γ(G) has
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no induced odd cycle of length ≥ 5. Similarly, it can be shown that Γc(G)

has no induced odd cycle of length ≥ 5. Thus Γ(G) is perfect. □

Theorem 2.5.4 If G is a group of order p3q, then Γ(G) is perfect.

Proof : We first consider the case, when p > q. In this case, G has a

unique normal Sylow p subgroup of order p3. We first show that Γ(G) has

no induced odd cycle of length ≥ 5. Suppose, Γ(G) has an induced odd

cycle C : H1 ∼ H2 ∼ · · ·Ht with t ≥ 5.

Claim 1: C has no subgroup of order p3.

Proof of Claim: Let |H1| = p3. Now, as H1 is a maximal subgroup

which is normal in G and H3, H4 ̸∼ H1, we must have H3, H4 ⊆ H1. This

contradicts that H3 ∼ H4.

From Claim 1, it follows that C has no subgroup of order q, as any

subgroup of order q can only be adjacent to a subgroup of order p3.

Claim 2: C has no subgroup of order p.

Proof of Claim: Let |H1| = p. Then |H2| = |Ht| = p2q and |H2 ∩Ht| =
p2. Note that H2, Ht being groups of order p2q has unique subgroup K of

order p2. As |H2 ∩ Ht| = p2, K is contained in both H2 and Ht. Again,

|H3| ∈ {p, pq, p2, p2q}. We show that none of them can happen.

If |H3| = p2 and as H3 ̸∼ Ht, then |H3Ht| = p2q · p2/p2 = p2q, i.e.,

|H3 ∩ Ht| = p2, i.e., H3 ⊆ K ⊆ H2. This contradicts that H3 ∼ H2.

Thus |H3| ̸= p2. Similarly, if |H3| = p2q, we get |H3 ∩ Ht| = p2, i.e,

H3 ∩ Ht = K = H3 ∩ H2. Thus |H2H3| = p4q2/p2 = p2q2 < p3q. This

contradicts that H3 ∼ H2. Thus |H3| ̸= p2q. If |H3| = p and as H3 ̸∼ Ht,
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we have H3 ⊆ Ht, i.e., H3 ⊆ H2, contradicting H3 ∼ H2. If |H3| = pq, we

have p | |H3 ∩ Ht|, i.e., p | |H3 ∩ H2|. Thus |H2H3| = p2q2 or p2q < p3q,

contradicting H3 ∼ H2. Hence Claim 2 holds.

Claim 3: C has no subgroup of order p2q.

Proof of Claim: Let |H1| = p2q. Then |H3|, |H4| ∈ {pq, p2, p2q}. As in

Claim 3, we can show that none of them can occur.

Using Claims 1 − 3, we can conclude that all the vertices in C are sub-

groups of order pq or p2. Moreover, it is evident that subgroups order pq

or p2 must alternate in C. However, as C is an odd cycle, this leads to a

contradiction.

Now we consider the case when p < q. In this case, any subgroup of

order p2q is both maximal and normal in G. We show that Γ(G) has no

induced odd cycle of length ≥ 5. Suppose, Γ(G) has an induced odd cycle

C : H1 ∼ H2 ∼ · · ·Ht with t ≥ 5.

Claim 4: C has no subgroup of order p2q.

Proof of Claim: Let |H1| = p2q, i.e, H1 is a maximal normal subgroup of

G. As H3, H4 are not adjacent to H1, we have H3, H4 ⊆ H1, contradicting

that H3 ∼ H4.

From Claim 4, it follows that C has no subgroup of order p, as subgroups

of order p can be adjacent only to subgroups of order p2q.

Claim 5: C has no subgroup of order q.

Proof of Claim: Let |H1| = q. Then |H2| = |Ht| = p3. As H2 ∼ H3, we

must have |H3| = q or pq. In any case, we get H3 ∼ Ht, a contradiction.
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If C has a subgroup H1 or order p3, then q does not divide |H3|, |H4|,
i.e, |H3|, |H4| is p, p2 or p3. This contradicts that H3 ∼ H4. Thus C has no

subgroup of order p3.

From above arguments it follows that all the vertices in C are subgroups

of order pq or p2. Moreover, it is evident that subgroups order pq or p2 must

alternate in C. However, as C is an odd cycle, this leads to a contradiction.

Thus for all primes p, q and for any group G of order pq, Γ(G) has no

induced odd cycle of length ≥ 5. Similarly, it can be shown that Γc(G) has

no induced odd cycle of length ≥ 5. Thus Γ(G) is perfect. □

Corollary 2.5.2 If G is a group of order p, p2, p3, pq, pqr or p2q, then Γ(G)

is perfect.

Proof : We consider the case when |G| = p2q. Let H = G × Zp. Then

H is a group of order p3q and G ∼= G × {0} has a normal complement

{e} × Zp
∼= Zp in H. Thus by Lemma 2.5.1 and Theorem 2.5.4, it follows

that Γ(G) is perfect. Similar proofs follow for other orders. □

Remark 2.5.3 There exist groups of order p4, p3q2, p2q2r, p3qr for which

the comaximal subgroup graph is not perfect. For example, for groups G =

Z3×S3×S3 of order 108 = 22 ·33, G = Z3×Z6×D5 of order 180 = 22 ·32 ·5,
G = Z15×D4 of order 120 = 23 · 3 · 5, Γ(G) is not perfect. In fact, for some

particular orders there exists exactly one group upto isomorphism for which

the comaximal subgroup graph is not perfect. One such is mentioned in the

concluding section.
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2.6 Classification upto Isomorphism

It is observed that non-isomorphic groups may give rise to isomorphic co-

maximal subgroup graphs. As an example, Γ(Z6) ∼= Γ(Z15) ∼= K2. So, it

is natural to ask: which groups yield unique comaximal subgroup graphs

or under what condition, Γ(G1) ∼= Γ(G2) implies G1
∼= G2 In this section,

we show that the comaximal subgroup graph of quaternion group (Q8) is

unique and the comaximal subgroup graph of the alternating group (A4) is

unique upto a class of groups. This leads to a partial answer of our question.

We start with some results which will be used later in the section.

Proposition 2.6.1 If G is a finite group with exactly five subgroups, then

G ∼= Zp4 or Z2 × Z2.

Lemma 2.6.2 Let G be a finite group and H,K be two subgroups of G such

that G = HK and |H ∩ K| = 1. If K is a cyclic normal subgroup of G,

then all subgroups of K are also normal in G.

Proof : Let K = ⟨a⟩ be normal in G. Let K1 = ⟨b⟩ be a subgroup of K

with b = at. Note that any element of G can be written uniquely written

as hai where i is a positive integer and h ∈ H. Now,

(hai)bj(hai)−1 = h(ai·atj·a−i)h−1 = (hajh−1)t = (al)t = (b)l ∈ K1, i.e., K1⊴G.

□

As G = HK implies G = KH, the role of H and K are interchangeable

in the above lemma.
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Theorem 2.6.1 Let G be a finite group such that Γ(G) ∼= Γ(A4), then

G ∼= A4 or Zp4q, where p and q are distinct primes.

Proof : We start by noting that Γ(A4) is isomorphic to K1,4 ∪ 3K1. Let

G be a finite group such that Γ(G) ∼= Γ(A4). As independence number of

Γ(A4) = 7 ≤ 8, by Theorem 2.4.1, G must be solvable.

If G is nilpotent, as Γ∗(G) is a star and Γ(G) has isolated vertices, by

Theorem 3.4 [23], G ∼= Zprq where r ≥ 2. Note that in this case, Γ(G) has

⟨pq⟩, ⟨p2q⟩, . . . , ⟨pr−1q⟩ as isolated vertices, i.e., r − 1 isolated vertices. So

r − 1 = 3 and hence G ∼= Zp4q.

Now, we assume that G is not nilpotent. As G is solvable, G = HK

and H ∩ K = {e}, where H is a Sylow-p-subgroup of G and K is a Hall

p′-subgroup of G. Note that K is non-trivial as otherwise G is a p-group,

i.e., nilpotent, a contradiction.

Case 1: H is not a unique Sylow p-subgroup of G: Then the number

of Sylow p-subgroup of G, np = 1 + pl ≥ p + 1. Note that all the Sylow

p-subgroups are adjacent to K in Γ(G). Thus K is the universal vertex of

Γ∗(G) and all the Sylow p-subgroups are pendant vertices, i.e., p + 1 ≤ 4

which implies p = 2 or 3. Also note that np ̸= 1 + pl with l ≥ 2, as

otherwise we get 1 + 2p ≤ 4, a contradiction. Thus np = 1 + p. Let

H = H1, H2, . . . , Hp+1 be the Sylow p-subgroups of G.

Also note that K is the unique subgroup of order |K| in G, because if

K ′ is another subgroup of order |K| in G, then K ′ is also adjacent to all

the Sylow p-subgroups of G, a contradiction. Thus K ⊴G.
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Further note that K is a maximal subgroup of G, because if K ′ is a

proper subgroup of G containing K, then K ′ is adjacent to all of H =

H1, H2, . . . , Hp+1, a contradiction.

If any of the Sylow p-subgroup Hi has a proper non-trivial subgroup H ′,

then KH ′ is a proper subgroup of G which properly contains K. Thus Hi’s

has no proper subgroups, i.e., |Hi| = p.

Since K is a maximal subgroup of G which is normal in G, the three

isolated vertex in Γ(G) corresponds to three non-trivial proper subgroups

of K. Thus K has exactly five subgroups and hence, by Proposition 2.6.1,

K ∼= Zq4 or Z2 × Z2, where q is a prime. So |G| = |H||K| = pq4 or 4p.

Case 1a: |G| = pq4: As K is a cyclic normal subgroup of G, by Lemma

2.6.2, all of its proper subgroups K1, K2, K3 of order q, q2, q3 respectively

are normal in G. Thus K,K1, K2, K3, H,HK1, HK2, HK3, H2, . . . , Hp+1 are

distinct proper subgroups of G and this exceeds the order of the graph.

Case 1b: |G| = 4p: We already have p = 2 or 3. However, as |K| = 4

and gcd(|H|, |K|) = 1, we must have p = 3, i.e., |G| = 12. Now there are

five groups upto isomorphism of order 12, namely Z12,Z6 × Z2, A4, D6 and

Dicyclic group of order 12. The first two are nilpotent and hence omitted.

The last two have 3 subgroups each of order 4, contradicting the fact that

K is the unique subgroup of order |K| in G. Thus G ∼= A4.

Case 2: H is the unique Sylow p-subgroup of G and hence H⊴G: As G

is solvable, there exists atleast one maximal subgroup of G which is normal

in G.
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Case 2a: Let there exists a maximal subgroup L other than H,K such

that L ⊴ G: Clearly both H and K are not contained in L, as HK = G.

Without loss of generality, let K ̸⊆ L. Then L ∼ K ∼ H and K is the

universal vertex in Γ∗(G). Also note that H ⊊ L, as otherwise we get a

cycle in Γ(G). Let a ∈ G \ (L ∪K). Thus ⟨a⟩ ̸⊆ L, ⟨a⟩ ̸= K and ⟨a⟩ ∼ L.

Thus L also has degree greater than or equal to 2, a contradiction.

Case 2b: H is a maximal subgroup of G and H ⊴ G: As G ̸= H ∪K,

choose a ∈ G \ (H ∪K). Thus ⟨a⟩ ∼ H and we have H ∼ K, i.e., degree of

H is greater than or equal to 2. Hence H is the universal vertex in Γ∗(G).

As any subgroup not contained in H is adjacent to H and Γ(G) has three

isolated vertices, we conclude that H has exactly five subgroups and hence,

by Proposition 2.6.1, H ∼= Zp4 or Z2 × Z2.

Again as Γ(G) has four pendant vertices or leaves, there are exactly four

subgroups which are not contained in H, out of which one is K. If K is

not cyclic, then K has atleast three proper subgroups K1, K2, K3 respec-

tively. Thus K,K1, K2, K3 and ⟨a⟩ are five subgroups not contained in H,

a contradiction. Thus K is cyclic.

Let |K| = p1
α1p2

α2 · · · pkαk . Then K has (α1 + 1)(α1 + 1) · · · (α1 + 1)− 1

non-trivial subgroups which are adjacent to H and ⟨a⟩ is another subgroup
adjacent to H. Thus (α1 + 1)(α1 + 1) · · · (α1 + 1) ≤ 4, i.e., |K| = p1p2, p1

2

or p1
3. In all cases, K has a subgroup of order p1, say K1.

If H ∼= Zp4, i.e., if H is cyclic, by Lemma 2.6.2, all subgroups of H

are normal in G. Let H1, H2, H3 be subgroups of H of order p, p2, p3 re-
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spectively. Thus H,K,H1, H2, H3, H1K, H2K,H3K,H1K1, H2K1, H3K1 are

distinct proper non-trivial subgroups of G. But this exceeds the order of

Γ(G), a contradiction.

Let us consider the case when H ∼= Z2×Z2. Then H has three non-trivial

proper subgroups H1, H2 and H3. If |K| = p1
2 or p1

3, then |G| = 4p21 or 4p
3
1.

In any case, the number of Sylow p1 subgroup, np1 = 1+ lp1|4. This implies

that either the Sylow p1-subgroup is unique, i.e., K⊴G or p1 = 3 and there

exists 4 Sylow p1-subgroups of G. If K ⊴ G, then G ∼= H × K, a direct

product of two p-groups. Thus G is nilpotent, a contradiction. Hence p1 = 3

and there exists 4 Sylow p1-subgroups of G, namely K,K2, K3, K4. Also, as

the Sylow p1-subgroups of G are of order p21 or p31, there exists atleast one

subgroup A of K of order p1. Thus, we get at least nine vertices, namely

H,H1, H2, H3, K,K2, K3, K4, A, in Γ(G), a contradiction.

Thus the only case left is H ∼= Z2 × Z2 and K ∼= Zp1p2. If there exists

another subgroup K ′ of G such that |K| = |K ′|, then there are atleast 5

subgroups contained in K or K ′, including K or K ′. Also, there are 4

subgroups contained in H, including H. Thus the total count of vertices

become at least 9, a contradiction. Thus K is the unique subgroup of order

p1p2 in G and hence K ⊴ G. This implies G ∼= H ×K and G is nilpotent,

a contradiction.

Case 2c: K is a maximal subgroup of G and K ⊴ G: Also as H ⊴ G,

we have G ∼= H × K. As G ̸= H ∪ K, choose a ∈ G \ (H ∪ K). Thus

⟨a⟩ ∼ K and we have H ∼ K, i.e., degree of K is greater than or equal to
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2. Hence K is the universal vertex in Γ∗(G). As any non-trivial subgroup

not contained in K is adjacent to K, therefore K has exactly 3 non-trvial

proper subgroups corresponding to the three isolated points in Γ(G). Thus,

by Proposition 2.6.1, K ∼= Zp4 or Z2 × Z2. In any case, K is a p-group and

hence nilpotent. Also H being a Sylow subgroup is also nilpotent, and G

being the direct product of H and K is also nilpotent, a contradiction.

Combining all the cases, we get G ∼= A4 or Zp4q, where p and q are

distinct primes. □

Theorem 2.6.2 Let G be a finite group such that Γ(G) ∼= Γ(Q8), then

G ∼= Q8.

Proof : We start by noting that Γ(Q8) ∼= K3 ∪K1. As the independence

number of Γ(G) is 2 ≤ 8, by Theorem 2.4.1, G is solvable.

As G is solvable, G = HK and H ∩ K = {e}, where H is a Sylow-p-

subgroup of G andK is a Hall p′-subgroup of G. IfK is the trivial subgroup,

then G = H is a p-group with 4 non-trivial proper subgroups and hence

nilpotent. Now as Γ∗(G) is complete, by Theorem 3.5 of [23], G ∼= Z3 × Z3

or Q8. As Γ(Z3 × Z3) is a complete graph on 4 vertices, we have G ∼= Q8.

If K is a non-trivial subgroup of G, then H ∼ K forms an edge of the

triangle in Γ(G). If H has two or more proper non-trivial subgroups, we

get two or more isolated vertices in Γ(G), a contradiction. Thus H has at

most one proper non-trivial subgroup, i.e., H ∼= Zp or Zp2.

If H ∼= Zp2, then H has a unique subgroup H1 of order p which cor-

responds to the only isolated vertex in Γ(G). Thus K can not have any
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non-trivial proper subgroup, as that would add another isolated vertex in

Γ(G). Thus K ∼= Zq and |G| = |H|K| = p2q. If H is not the unique Sy-

low p-subgroup of G, then there exists another subgroup L of order p2 and

K ∼ L. This implies H ∼ L and hence p2q = |G| = |HL|. But as H and L

are groups of order p2, |HL| is not divisible by q, a conradiction. Therefore

H ⊴G. Thus, by Lemma 2.6.2, H1 ⊴G. Then H1K is a non-trivial proper

subgroup of G of order pq and H1K ∼ H. Therefore from the graph Γ(G),

we get that H1K ∼ K, a contradiction.

If H ∼= Zp, then K can have at most one non-trivial proper subgroup,

as each such subgroup corresponds to an isolated vertex in Γ(G). Thus

K ∼= Zq or Zq2. If K ∼= Zq, then |G| = |H||K| = pq. By Theorem 3.2

of [23], this implies that Γ(G) is a star, a contradiction. If K ∼= Zq2, then

|G| = pq2 and K has a unique subgroup K1 of order q, which corresponds

to the isolated vertex in Γ(G). If H is not the unique Sylow p-subgroup

of G, then there exists another Sylow p-subgroup L of G of order p. Also

KL = G, i.e., K ∼ L. Now from the graph Γ(G), we have H ∼ L, i.e.,

pq2 = |G| = |HL|. But, arguing similarly as above, we get that q does not

divide |HL|, a contradiction. Thus H is the unique Sylow p-subgroup of G

and H ⊴ G. As a result, HK1 is a proper subgroup of G of order pq and

HK1 ∼ K. Thus, from the graph Γ(G), we have H ∼ HK1, a contradiction.

Combining the above cases, we see that G ∼= Q8. □

Remark 2.6.3 In a similar way, it has been shown that if for a finite solv-

able group G, Γ(G) ∼= Γ(D2k) holds, then G ∼= D2k, where D2k is the dihedral
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group of order 2k+1. The proof is long and will appear in the next chapter.

2.7 Conclusion and Open Issues

In this chapter, we continued the study of co-maximal subgroup graph Γ(G)

and introduced the deleted co-maximal subgroup graph Γ∗(G) of a group

G. We discuss its various properties like connectdeness, girth and bipartite-

ness, independence number, chromatic number, perfectness, isomorphism

problems on Γ(G). However, there are natural questions which are yet to

be resolved.

The first question arises from Remark 2.2.6.

Question 1: Does there exist a finite group G such that diam(Γ∗(G)) =

4?

On the light of Corollary 2.2.4 and Theorem 2.2 of [6], we can say that if

such a group G exists, then it must be non-nilpotent and Γ(G) must have

isolated vertices.

The next question arises from Remark 2.2.8.

Question 2: Does there exist a finite non-solvable group such that Γ∗(G)

is disconnected?

Question 3: In Theorem 2.2.5, it was proved that Γmax(G) is connected

if and only if Γ∗(G) is connected. However we need to characterize G for

which Γmax(G) is connected.

Question 4: In Theorem 2.4.1, it was proved that if independence num-

ber of Γ(G) is less than or equal to 8, then G is solvable. But, we feel that
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a stronger bound is true. As A5 is the smallest non-solvable group and

α(Γ(A5)) = 52, we strongly believe that: α(Γ(G)) ≤ 51 ⇒ G is solvable?

Question 5: In view of Remark 2.5.3, we conjecture that: If G is a

group of order p4, Γ(G) is perfect if and only if G ≁= Z4
p.

In the previous section, we have shown examples of groups which can be

uniquely recovered from their comaximal subgroup graphs, e.g., quaternion

group, dihedral groups. It remains open to classify all finite groups G which

can be uniquely recovered from their comaximal subgroup graphs.
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