Chapter 3

Co-Maximal Subgroup Graph of \mathbb{Z}_{n} and D_{n}

In this chapter, we study various properties of co-maximal subgroup graph of \mathbb{Z}_{n} and D_{n}.

3.1 Co-Maximal Subgroup Graph of \mathbb{Z}_{n}

We start with some basic properties of $\Gamma\left(\mathbb{Z}_{n}\right)$ and $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$. As for any cyclic p-group $G, \Gamma\left(\mathbb{Z}_{n}\right)$ is empty, throughout the paper, we consider $\Gamma\left(\mathbb{Z}_{n}\right)$ where n is not a prime power.

3.1.1 Basic Properties of $\Gamma\left(\mathbb{Z}_{n}\right)$

In this section, we study some basic properties of $\Gamma\left(\mathbb{Z}_{n}\right)$ and $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ like connectedness, degree, diameter etc.

Lemma 3.1.1 Let $H=\langle x\rangle$ and $K=\langle y\rangle$ be two subgroups of \mathbb{Z}_{n} where x, y divide n. Then $H \sim K$ in $\Gamma\left(\mathbb{Z}_{n}\right)$ if and only if $\operatorname{gcd}(x, y)=1$.

Proof : It follows from Bezout's theorem and the observation that $H K=$ $\{s x+t y: s, t \in \mathbb{Z}\}$.

Theorem 3.1.1 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Let $H=\left\langle p_{1}{ }^{\beta_{1}} p_{2}{ }^{\beta_{2}} \cdots p_{k}{ }^{\beta_{k}}\right\rangle$ be a subgroup of \mathbb{Z}_{n}, where $\beta_{i} \leq \alpha_{i}$. Then degree of H in $\Gamma\left(\mathbb{Z}_{n}\right)$ is

$$
\operatorname{deg}(H)= \begin{cases}0, & \text { if } \beta_{i} \neq 0, \forall i, \\ \prod_{j: \beta_{j}=0}\left(\alpha_{j}+1\right)-1, & \text { otherwise. }\end{cases}
$$

Proof : Follows from Lemma 3.1.1.

Corollary 3.1.2 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Then $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is Eulerian if and only if n is a perfect square.

Proof : If n is a perfect square, then each α_{i} is even and by Theorem 3.1.1, degree of every vertex of $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is even and hence $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is Eulerian. If n is not a perfect square, then there exists i such that α_{i} is odd. Let $H=\left\langle p_{1}{ }^{\alpha_{1}} \cdots p_{i-1}{ }^{\alpha_{i-1}} p_{i+1}{ }^{\alpha_{i+1}} \cdots p_{k}{ }^{\alpha_{k}}\right\rangle$. Then by Theorem 3.1.1, $\operatorname{deg}(H)=$ α_{i}, which is odd. Thus $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is not Eulerian.

Theorem 3.1.2 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Then $\Gamma\left(\mathbb{Z}_{n}\right)$ has exactly $\alpha_{1} \alpha_{2} \cdots \alpha_{k}-1$ isolated vertices.

Proof : Since G is a cyclic non p-group of order $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$. Then, $G \cong \mathbb{Z}_{n}$. By Lemma 3.1.1, $H=\left\langle p_{1} p_{2} \cdots p_{k}\right\rangle$ is an isolated vertex in $\Gamma(G)$. Similarly, if x is a multiple of $p_{1} p_{2} \cdots p_{k}$ which divides n, then $\langle x\rangle$ is an isolated vertex in $\Gamma(G)$.

Let $A=\langle a\rangle$ with $a \mid n$ be a subgroup of G such that A is an isolated vertex in $\Gamma(G)$. As G has a unique subgroup of order corresponding to each factor of n and for any non-trivial proper subgroup H of G, we have $A \nsim H$ in $\Gamma(G)$, we have $\operatorname{gcd}(a, m) \neq 1$ for any factor m of $|G|=n$. Thus $p_{i} \mid a$ for all i, i.e., a is a multiple of $p_{1} p_{2} \cdots p_{k}$ which divides n.

Hence the number of isolated vertices in $\Gamma(G)$ is $\alpha_{1} \alpha_{2} \cdots \alpha_{k}-1$.
Corollary 3.1.3 $\Gamma\left(\mathbb{Z}_{n}\right)$ is connected if and only if n is square-free.
Proof : Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$. The corollary follows from the fact that $\alpha_{1} \alpha_{2} \cdots \alpha_{k}-1=0$ if and only if n is square-free.

Theorem 3.1.3 Let G be a cyclic non p-group of order $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Then $\operatorname{diam}\left(\Gamma^{*}(G)\right)= \begin{cases}2, & \text { if } k=2 \\ 3, & \text { if } k \geq 3\end{cases}$
Proof : It is clear that the number of maximal subgroups of G is k. If $k=2$, then the vertices of $\Gamma^{*}(G)$ are $\left\langle p_{1}\right\rangle,\left\langle p_{1}{ }^{2}\right\rangle, \ldots,\left\langle p_{1}{ }^{\alpha_{1}}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{2}{ }^{2}\right\rangle, \ldots,\left\langle p_{2}{ }^{\alpha_{2}}\right\rangle$ and any two non-adjacent vertices always have a common neighbour either $\left\langle p_{1}\right\rangle$ or $\left\langle p_{2}\right\rangle$. Hence its diameter is 2 .

If $k \geq 3$, then $\left\langle p_{1} p_{2} \cdots p_{k-1}\right\rangle$ and $\left\langle p_{2} p_{3} \cdots p_{k}\right\rangle$ are non-adjacent vertices in $\Gamma^{*}(G)$ and they do not have any common neighbour. Thus their distance is greater than 2. Now, as \mathbb{Z}_{n} is nilpotent, we have $\operatorname{diam}\left(\Gamma^{*}(G)\right)=3$.

Theorem 3.1.4 Let G be a cyclic non p-group of order $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Then $\Gamma(G)$ has pendant vertices if and only if $\alpha_{i}=1$ for some i.

Proof : Let G be a cyclic group of order $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where at least one $\alpha_{i}=1$, say $\alpha_{1}=1$, i.e., $n=p_{1} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$. Then $\left\langle p_{2} p_{3} \cdots p_{k}\right\rangle$ is a pendant vertex in $\Gamma(G)$, which is adjacent to $\left\langle p_{1}\right\rangle$.

Conversely, let G be a cyclic group of order $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ such that $\Gamma(G)$ has at least one pendant vertex. If possible, let $\alpha_{i} \geq 2$ for all i. Let $H=\langle m\rangle$ be a pendant vertex in $\Gamma(G)$ where $m \mid n$. If $p_{i} \mid m$ for all i, then H is an isolated vertex, a contradiction. Thus, m misses at least one prime factor. Let $m=p_{2}{ }^{\beta_{2}} \cdots p_{k}{ }^{\beta_{k}}$ where $0 \leq \beta_{i} \leq \alpha_{i}$. But this implies that H is adjacent to the vertices $\left\langle p_{1}\right\rangle,\left\langle p_{1}^{2}\right\rangle, \ldots,\left\langle p_{1}{ }^{\alpha_{1}}\right\rangle$. As $\alpha_{1} \geq 2, H$ can not be a pendant vertex. Thus, at least some α_{i} must be 1 .

3.1.2 Hamiltonicity, Perfectness and Dominating Sets of $\Gamma\left(\mathbb{Z}_{n}\right)$

In this section, we characterize the values of n for which $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is perfect and hamiltonian. We also find the domination number of $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$.

Theorem 3.1.5 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Then $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is Hamiltonian if and only if $k=2$ and $\alpha_{1}=\alpha_{2}$.

Proof : If $k=2$ and $\alpha_{1}=\alpha_{2}$, then $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{1}}$. We now explicitly construct the hamiltonian circuit in $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$:

$$
\left\langle p_{1}\right\rangle \sim\left\langle p_{2}\right\rangle \sim\left\langle p_{1}^{2}\right\rangle \sim\left\langle p_{2}^{2}\right\rangle \sim\left\langle p_{1}^{3}\right\rangle \sim\left\langle p_{2}^{3}\right\rangle \sim \cdots \sim\left\langle p_{1}^{\alpha_{1}}\right\rangle \sim\left\langle p_{2}^{\alpha_{1}}\right\rangle \sim\left\langle p_{1}\right\rangle .
$$

Conversely, let $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ be Hamiltonian. If possible, let $k \geq 3$. If $\alpha_{i}=1$ for some i, then the graph has a vertex of degree 1 and hence it is not hamiltonian. Thus, we assume that $\alpha_{i} \geq 2$ for all i. Without loss of generality, let $\alpha_{1}=\min \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$. Now, the vertices of the form $\left\langle p_{2}{ }^{\alpha_{2}^{\prime}} p_{3}{ }_{3}^{\alpha_{3}^{\prime}} \cdots p_{k}{ }^{\alpha_{k}^{\prime}}\right\rangle$ are adjacent only to the vertices of the form $\left\langle p_{1}{ }^{\alpha_{1}^{\prime}}\right\rangle$, where $1 \leq \alpha_{i}^{\prime} \leq \alpha_{i}$, i.e., we have $\alpha_{2} \alpha_{3} \cdots \alpha_{k}$ vertices of degree α_{1}. As two vertices of the form $\left\langle p_{2}{ }^{\alpha_{2}^{\prime}} p_{3}{ }^{\alpha_{3}^{\prime}} \cdots p_{k}{ }^{\alpha_{k}^{\prime}}\right\rangle$ are not adjacent, to complete a hamiltonian cycle, we need at least $\alpha_{2} \alpha_{3} \cdots \alpha_{k}$ different vertices between the vertices of the form $\left\langle p_{2}{ }^{\alpha_{2}^{\prime}} p_{3}{ }^{\alpha_{3}^{\prime}} \cdots p_{k}{ }^{\alpha_{k}^{\prime}}\right\rangle$. But, as $k \geq 3$, we have $\alpha_{2} \alpha_{3} \cdots \alpha_{k}>\alpha_{1}$. This leads to a contradiction. Thus $k=2$ and $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}}$.

As earlier, we can assume that $\alpha_{1}, \alpha_{2} \geq 2$. Let, if possible, $\alpha_{1} \neq \alpha_{2}$. Without loss of generality, let $2 \leq \alpha_{1}<\alpha_{2}$. Now, on any hamiltonian circuit in $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$, between any two vertices of the form $\left\langle p_{1}{ }^{i}\right\rangle$ and $\left\langle p_{1}{ }^{j}\right\rangle$ we have a vertex of the form $\left\langle p_{2}{ }^{t}\right\rangle$ and between any two vertices of the form $\left\langle p_{2}{ }^{i}\right\rangle$ and $\left\langle p_{2}{ }^{j}\right\rangle$ we have a vertex of the form $\left\langle p_{1}{ }^{t}\right\rangle$. Thus any Hamiltonian circuit should consist of an alternating run of vertices of the form $\left\langle p_{1}{ }^{i}\right\rangle$ and $\left\langle p_{2}{ }^{j}\right\rangle$. However, as $\alpha_{1}<\alpha_{2}$, we have more vertices of the form $\left\langle p_{2}{ }^{j}\right\rangle$ than that of the form $\left\langle p_{1}{ }^{i}\right\rangle$, a contradiction. Thus $\alpha_{1}=\alpha_{2}$.

Theorem 3.1.6 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes and $\alpha_{i} \geq 1$. Then $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is perfect if and only if $k \leq 4$.

Proof : If $k \geq 5$, then there exists an induced 5 -cycle in $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ as shown in Figure 3.1.2. Thus, in this case, $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ is not perfect. Let $k \leq 4$, i.e., n has at most 4 distinct prime factors $p_{1}, p_{2}, p_{3}, p_{4}$. Let, if possible, $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ admits an induced odd cycle of length $t \geq 5$, say $\left\langle h_{1}\right\rangle \sim$ $\left\langle h_{2}\right\rangle \sim \cdots \sim\left\langle h_{t}\right\rangle \sim\left\langle h_{1}\right\rangle$. From the non-adjacency relations, we get $\operatorname{gcd}\left(h_{1}, h_{3}\right), \operatorname{gcd}\left(h_{1}, h_{4}\right), \operatorname{gcd}\left(h_{2}, h_{4}\right), \operatorname{gcd}\left(h_{2}, h_{5}\right), \operatorname{gcd}\left(h_{3}, h_{t}\right) \neq 1$.

Let $p_{1} \mid \operatorname{gcd}\left(h_{1}, h_{3}\right)$. Then $p_{1} \mid h_{1}$ and $p_{1} \mid h_{3}$. Again, as $\left\langle h_{t}\right\rangle \sim\left\langle h_{1}\right\rangle$, we have $\operatorname{gcd}\left(h_{1}, h_{t}\right)=1$, i.e., $p_{1} \nmid h_{t}$.

Similarly, as $\left\langle h_{3}\right\rangle \sim\left\langle h_{4}\right\rangle$, we have $p_{1} \nmid h_{4}$, i.e., $p_{1} \nmid \operatorname{gcd}\left(h_{1}, h_{4}\right)$. Let $p_{2} \mid \operatorname{gcd}\left(h_{1}, h_{4}\right)$. Then $p_{2} \mid h_{1}$ and $p_{2} \mid h_{4}$. Now as $\left\langle h_{3}\right\rangle \sim\left\langle h_{4}\right\rangle$, we have $p_{2} \nmid h_{3}$.

Again, as $p_{1}, p_{2} \mid h_{1}$ and $\left\langle h_{1}\right\rangle \sim\left\langle h_{2}\right\rangle$, we have $p_{1}, p_{2} \nmid h_{2}$, i.e., $p_{1}, p_{2} \nmid$ $\operatorname{gcd}\left(h_{2}, h_{4}\right)$. Let $p_{3} \mid \operatorname{gcd}\left(h_{2}, h_{4}\right)$. Then $p_{3} \mid h_{2}$ and $p_{3} \mid h_{4}$. As $\left\langle h_{2}\right\rangle \sim\left\langle h_{3}\right\rangle$, we have $p_{3} \nmid h_{3}$.

Thus $p_{1}, p_{2}, p_{3} \nmid \operatorname{gcd}\left(h_{3}, h_{t}\right)$. Let $p_{4} \mid \operatorname{gcd}\left(h_{3}, h_{t}\right)$. Then $p_{4} \mid h_{3}$ and $p_{4} \mid h_{t}$. As $\left\langle h_{2}\right\rangle \sim\left\langle h_{3}\right\rangle$, we have $p_{4} \nmid h_{2}$. Again, as $\left\langle h_{4}\right\rangle \sim\left\langle h_{5}\right\rangle$, we have $p_{3} \nmid h_{5}$.

From the above situation, we get $p_{1}, p_{2}, p_{3}, p_{4} \nmid \operatorname{gcd}\left(h_{2}, h_{5}\right)$. This is a contradiction, as $\operatorname{gcd}\left(h_{2}, h_{5}\right) \neq 1$ and $k \leq 4$. Thus $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ does not admit any induced odd cycle of length $t \geq 5$.

Let, if possible, $\Gamma^{*}\left(\mathbb{Z}_{n}\right)^{c}$ admits an induced odd cycle of length $t \geq 5$, say $\left\langle h_{1}\right\rangle \sim\left\langle h_{2}\right\rangle \sim \cdots \sim\left\langle h_{t}\right\rangle \sim\left\langle h_{1}\right\rangle$. Note that in the complement graph, two vertices $\left\langle h_{i}\right\rangle$ and $\left\langle h_{j}\right\rangle$ are non-adjacent/adjacent according as $\operatorname{gcd}\left(h_{i}, h_{j}\right)$ is equal/not equal to 1 respectively.

As $\left\langle h_{1}\right\rangle \sim\left\langle h_{2}\right\rangle$, we have $\operatorname{gcd}\left(h_{1}, h_{2}\right) \neq 1$. Let $p_{1} \mid \operatorname{gcd}\left(h_{1}, h_{2}\right)$. Then $p_{1} \mid h_{1}$ and $p_{1} \mid h_{2}$. As $\operatorname{gcd}\left(h_{1}, h_{3}\right)=1$, we have $p_{1} \nmid h_{3}$, i.e., $p_{1} \nmid$ $\operatorname{gcd}\left(h_{2}, h_{3}\right)$. Similarly, we can conclude that p_{1} does not divide any one of $\operatorname{gcd}\left(h_{3}, h_{4}\right), \operatorname{gcd}\left(h_{4}, h_{5}\right), \operatorname{gcd}\left(h_{1}, h_{t}\right)$.

Let $p_{2} \mid \operatorname{gcd}\left(h_{2}, h_{3}\right)$. Then $p_{2} \mid h_{2}$ and $p_{2} \mid h_{3}$. As $\operatorname{gcd}\left(h_{2}, h_{4}\right)=1$, we have $p_{2} \nmid h_{4}$, i.e., p_{2} does not divide $\operatorname{gcd}\left(h_{3}, h_{4}\right)$ and $\operatorname{gcd}\left(h_{4}, h_{5}\right)$. Similarly, as $\operatorname{gcd}\left(h_{2}, h_{t}\right)=1$, we have $p_{2} \nmid h_{t}$, i.e., $p_{2} \nmid \operatorname{gcd}\left(h_{1}, h_{t}\right)$.

As $p_{1}, p_{2} \nmid \operatorname{gcd}\left(h_{3}, h_{4}\right)$, let $p_{3} \mid \operatorname{gcd}\left(h_{3}, h_{4}\right)$. Then $p_{3} \mid h_{3}$ and $p_{3} \mid h_{4}$. As $\operatorname{gcd}\left(h_{1}, h_{3}\right)=1$, we have $p_{3} \nmid h_{1}$, i.e., $p_{3} \nmid \operatorname{gcd}\left(h_{1}, h_{t}\right)$. Similarly, as $\operatorname{gcd}\left(h_{3}, h_{5}\right)=1$, we have $p_{3} \nmid h_{5}$, i.e., $p_{3} \nmid \operatorname{gcd}\left(h_{4}, h_{5}\right)$.

As $p_{1}, p_{2}, p_{3} \nmid \operatorname{gcd}\left(h_{4}, h_{5}\right)$, let $p_{4} \mid \operatorname{gcd}\left(h_{4}, h_{5}\right)$. Then $p_{4} \mid h_{4}$ and $p_{4} \mid h_{5}$. As $\operatorname{gcd}\left(h_{1}, h_{4}\right)=1$, we have $p_{4} \nmid h_{1}$, i.e., $p_{4} \nmid \operatorname{gcd}\left(h_{1}, h_{t}\right)$.

Thus $p_{1}, p_{2}, p_{3}, p_{4} \nmid \operatorname{gcd}\left(h_{1}, h_{t}\right)$. But this is a contradiction, as $\operatorname{gcd}\left(h_{1}, h_{t}\right)>$ 1 and n has at most four distinct prime factors. Thus $\Gamma^{*}\left(\mathbb{Z}_{n}\right)^{c}$ does not admit an induced odd cycle of length $t \geq 5$.

Hence, by strong perfect graph theorem, the theorem follows.

Figure 3.1: Induced 5-cycle in $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$, for $k \geq 5$

Theorem 3.1.7 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where p_{i} 's are distinct primes,
$k \geq 2$ and $\alpha_{i} \geq 1$. Then

$$
\gamma\left(\Gamma^{*}\left(\mathbb{Z}_{n}\right)\right)= \begin{cases}1, & \text { if } n=p_{1}{ }^{\alpha_{1}} p_{2} \\ k, & \text { otherwise }\end{cases}
$$

Proof : Clearly $\left\{\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle, \ldots,\left\langle p_{k}\right\rangle\right\}$ is a dominating set for $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ of size k. Thus $\gamma\left(\Gamma^{*}\left(\mathbb{Z}_{n}\right)\right) \leq k$.

Let $S=\left\{\left\langle x_{1}\right\rangle,\left\langle x_{2}\right\rangle, \ldots,\left\langle x_{k-1}\right\rangle\right\}$ be a dominating set of $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$ of size $k-$ 1. Let $m=p_{1} p_{2} p_{3} \cdots p_{k}$. Out of the k vertices $\left\langle m / p_{1}\right\rangle,\left\langle m / p_{2}\right\rangle, \ldots,\left\langle m / p_{k}\right\rangle$, at least one does not belong to S. Without loss of generality, let $\left\langle m / p_{1}\right\rangle \notin S$ and $\left\langle m / p_{1}\right\rangle \sim\left\langle x_{1}\right\rangle$. Thus, by Lemma 3.1.1, $x_{1}=p_{1}^{\alpha_{1}^{\prime}}$, where $1 \leq \alpha_{1}^{\prime} \leq \alpha_{1}$. Thus $\left\langle x_{1}\right\rangle$ is not adjacent to any of the $k-1$ vertices $\left\langle m / p_{2}\right\rangle,\left\langle m / p_{3}\right\rangle, \ldots,\left\langle m / p_{k}\right\rangle$. Again, by similar argument, not all of these $k-1$ vertices belong to S. Without loss of generality, let $\left\langle m / p_{2}\right\rangle \notin S$ and $\left\langle m / p_{2}\right\rangle \sim\left\langle x_{2}\right\rangle$. Proceeding similarly, we get $x_{2}=p_{2}^{\alpha_{2}^{\prime}}$, where $1 \leq \alpha_{2}^{\prime} \leq \alpha_{2}$. Thus $\left\langle x_{1}\right\rangle$ and $\left\langle x_{2}\right\rangle$ are not adjacent to any of the $k-2$ vertices $\left\langle m / p_{3}\right\rangle, \ldots,\left\langle m / p_{k}\right\rangle$. Continuing in this way, we get $x_{i}=p_{i}^{\alpha_{i}^{\prime}}$ for $i=1,2, \ldots, k-1$. However, in that case, $\left\langle m / p_{k}\right\rangle$ neither belong to S nor adjacent to any element of S, a contradiction. Hence $\gamma\left(\Gamma^{*}\left(\mathbb{Z}_{n}\right)\right)=k$.

Note that the proof does not work if $k=2$ and exactly one of the two powers is 1 . Because in that case, one of $\left\langle m / p_{1}\right\rangle$ and $\left\langle m / p_{2}\right\rangle$ is not a vertex of $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$, i.e., an isolated vertex of $\Gamma\left(\mathbb{Z}_{n}\right)$. If $k=2$ and $n=p_{1}{ }^{\alpha_{1}} p_{2}$, then $\left\langle p_{2}\right\rangle$ dominates $\Gamma^{*}\left(\mathbb{Z}_{n}\right)$.

3.1.3 Isomorphisms

In this section, we discuss the conditions under which co-maximal subgroup graphs defined over different cyclic groups are isomorphic. For that, we start with the following definition.

Definition 3.1.1 Two positive integers n and m are said to be of same prime-factorization type if $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ and $m=q_{1}{ }^{\beta_{1}} q_{2}{ }^{\beta_{2}} \cdots q_{k}{ }^{\beta_{k}}$ where p_{i}, q_{i} 's are primes and there exists $\sigma \in S_{k}$ such that $\alpha_{i}=\beta_{\sigma(i)}$ for $i=1,2, \ldots, k$.

Theorem 3.1.8 Let n and m be two integers. Then $\Gamma\left(\mathbb{Z}_{n}\right) \cong \Gamma\left(\mathbb{Z}_{m}\right)$ if and only if m and n are of same prime-factorization type.

Proof : If m and n are of same prime-factorization type, then the result is obvious. Let $\Gamma\left(\mathbb{Z}_{n}\right) \cong \Gamma\left(\mathbb{Z}_{m}\right)$, then as their clique numbers are equal, both m and n have same number of distinct prime factors. Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ and $m=q_{1}{ }^{\beta_{1}} q_{2}{ }^{\beta_{2}} \cdots q_{k}{ }^{\beta_{k}}$. Also as they have same number of isolated vertices, we have $\alpha_{1} \cdot \alpha_{2} \cdots \alpha_{k}=\beta_{1} \cdot \beta_{2} \cdots \beta_{k}$.

Without loss of generality, let $\alpha_{1}=\min \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$. If possible, let $\alpha_{1} \notin\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$. Now, note that any vertex of the form $\left\langle p_{2}{ }^{\alpha_{2}^{\prime}} p_{3}{ }^{\alpha_{3}^{\prime}} \cdots p_{k}{ }^{\alpha_{k}^{\prime}}\right\rangle\left(1 \leq \alpha_{i}^{\prime} \leq \alpha_{i}\right)$ in $\Gamma\left(\mathbb{Z}_{n}\right)$ is adjacent to only α_{1} vertices, namely $\left\langle p_{1}\right\rangle,\left\langle p_{1}^{2}\right\rangle, \ldots,\left\langle p_{1}^{\alpha_{1}}\right\rangle$. Thus $\Gamma\left(\mathbb{Z}_{n}\right)$ has $\alpha_{2} \alpha_{3} \cdots \alpha_{k}$ vertices of degree α_{1}. As $\alpha_{1} \leq \min \left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$ and $\alpha_{1} \notin\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$, from Theorem 3.1.1, it follows that $\Gamma\left(\mathbb{Z}_{m}\right)$ has no vertex of degree α_{1}, a contradiction. Thus $\alpha_{1}=\beta_{i}$ for some i. By suitable renaming, let $\alpha_{1}=\beta_{1}$.

Again, without loss of generality, let $\alpha_{2}=\min \left\{\alpha_{2}, \ldots, \alpha_{k}, \beta_{2}, \ldots, \beta_{k}\right\}$. If possible, let $\alpha_{2} \notin\left\{\beta_{2}, \ldots, \beta_{k}\right\}$. If $\alpha_{2} \neq \beta_{1}$, then by similar argument, $\Gamma\left(\mathbb{Z}_{m}\right)$ has no vertex of degree α_{2}, a contradiction. Thus, we assume that $\alpha_{2}=\alpha_{1}=\alpha_{2}$. Then $\Gamma\left(\mathbb{Z}_{n}\right)$ has $\alpha_{2} \alpha_{3} \cdots \alpha_{k}+\alpha_{1} \alpha_{3} \cdots \alpha_{k}$ of degree α_{1} and $\Gamma\left(\mathbb{Z}_{m}\right)$ has $\beta_{2} \beta_{3} \cdots \beta_{k}$ of degree α_{1}. As $\Gamma\left(\mathbb{Z}_{n}\right) \cong \Gamma\left(\mathbb{Z}_{m}\right)$, we have

$$
\begin{gathered}
\alpha_{2} \alpha_{3} \cdots \alpha_{k}+\alpha_{1} \alpha_{3} \cdots \alpha_{k}=\beta_{2} \beta_{3} \cdots \beta_{k} \\
\text { i.e., } \alpha_{3} \cdots \alpha_{k}\left(\alpha_{1}+\alpha_{2}\right)=\frac{\alpha_{1} \cdot \alpha_{2} \cdots \alpha_{k}}{\beta_{1}}\left(\text { as } \alpha_{1} \cdot \alpha_{2} \cdots \alpha_{k}=\beta_{1} \cdot \beta_{2} \cdots \beta_{k}\right)
\end{gathered}
$$

$$
\text { i.e., } \beta_{1}\left(\alpha_{1}+\alpha_{2}\right)=\alpha_{1} \alpha_{2} \text {, i.e., } 2 \alpha_{1}^{2}=\alpha_{1}^{2} \text {, a contradiction. }
$$

Thus $\alpha_{2}=\beta_{i}$ for some $i \in\{2,3, \ldots, k\}$. By suitable renaming, let $\alpha_{2}=\beta_{2}$.
Proceeding this way, suppose in the $(l-1)$-th step, we get $\alpha_{i}=\beta_{i}$ for $i=$ $1,2, \ldots, l-1$. Without loss of generality, let $\alpha_{l}=\min \left\{\alpha_{l}, \ldots, \alpha_{k}, \beta_{l}, \ldots, \beta_{k}\right\}$. If possible, let $\alpha_{l} \notin\left\{\beta_{l}, \ldots, \beta_{k}\right\}$. If $\alpha_{l} \notin\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{l-1}\right\}$, then by similar argument, $\Gamma\left(\mathbb{Z}_{m}\right)$ has no vertex of degree α_{l}, a contradiction. Thus, we assume that $\alpha_{l} \in\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{l-1}\right\}$. Let $\alpha_{l}=\beta_{p}=\beta_{p+1}=\cdots=\beta_{l-1}=$ $\alpha_{p}=\alpha_{p+1}=\cdots=\alpha_{l-1}$ for some $1 \leq p \leq l-1$.

Therefore, $\Gamma\left(\mathbb{Z}_{n}\right)$ has

$$
\begin{gathered}
\left(\alpha_{1} \alpha_{2} \cdots \alpha_{p-1} \alpha_{p+1} \cdots \alpha_{k}\right)+\left(\alpha_{1} \cdots \alpha_{p} \alpha_{p+1} \cdots \alpha_{k}\right)+\cdots+\left(\alpha_{1} \cdots \alpha_{l-1} \alpha_{l+1} \cdots \alpha_{k}\right) \\
=\alpha_{1} \cdots \alpha_{k}\left(\frac{1}{\alpha_{p}}+\frac{1}{\alpha_{p+1}}+\cdots+\frac{1}{\alpha_{l}}\right) \text { vertices of degree } \alpha_{l}
\end{gathered}
$$

Similarly, $\Gamma\left(\mathbb{Z}_{m}\right)$ has

$$
\beta_{1} \cdots \beta_{k}\left(\frac{1}{\beta_{p}}+\frac{1}{\beta_{p+1}}+\cdots+\frac{1}{\beta_{l-1}}\right) \text { vertices of degree } \alpha_{l} \text {. }
$$

Now, as $\Gamma\left(\mathbb{Z}_{n}\right) \cong \Gamma\left(\mathbb{Z}_{m}\right)$, we have

$$
\begin{aligned}
& \alpha_{1} \cdots \alpha_{k}\left(\frac{1}{\alpha_{p}}+\frac{1}{\alpha_{p+1}}+\cdots+\frac{1}{\alpha_{l}}\right)=\beta_{1} \cdots \beta_{k}\left(\frac{1}{\beta_{p}}+\frac{1}{\beta_{p+1}}+\cdots+\frac{1}{\beta_{l-1}}\right) \\
& \text { i.e., }\left(\frac{1}{\alpha_{p}}+\frac{1}{\alpha_{p+1}}+\cdots+\frac{1}{\alpha_{l}}\right)=\left(\frac{1}{\alpha_{p}}+\frac{1}{\alpha_{p+1}}+\cdots+\frac{1}{\alpha_{l-1}}\right) \Rightarrow\left(\frac{l-p+1}{\alpha_{l}}\right)=\left(\frac{l-p}{\alpha_{l}}\right.
\end{aligned}
$$

a contradiction. Thus, by suitable renaming, we get $\alpha_{l}=\beta_{l}$, and hence by induction, the theorem follows.

3.2 Co-Maximal Subgroup Graph of D_{n}

In this section, we study the comaximal subgroup graph on finite dihedral groups, denoted by $\Gamma\left(D_{n}\right)$.

3.2.1 Structural Properties of $\Gamma\left(D_{n}\right)$ and $\Gamma^{*}\left(D_{n}\right)$

We characterize various structural properties of $\Gamma\left(D_{n}\right)$ and $\Gamma^{*}\left(D_{n}\right)$ of like order, maximum and minimum degree, girth, diameter and when they are Eulerian. We start by describing the complete list of subgroups of D_{n}, which constitute the vertex set of the graph to be studied.

The dihedral group D_{n} has two generators r and s with orders n and 2 such that $s r s^{-1}=r^{-1} . D_{n}=\left\langle r, s: r^{n}=s^{2}=1, s r s=r^{n-1}\right\rangle$ consists of $2 n$
elements. We recall a result on the complete list of subgroups of D_{n}. For a proof of this listing, please refer to [22].

Proposition 3.2.1 Every subgroup of D_{n} is either cyclic or dihedral. A complete listing of the subgroups is as follows:

1. $\left\langle r^{d}\right\rangle$, where $d \mid n$, with index $2 d$,
2. $\left\langle r^{d}, r^{i} s\right\rangle$, where $d \mid n$ and $0 \leq i \leq d-1$, with index d.

Moreover, every subgroup of D_{n} occurs exactly once in this listing.

Proposition 3.2.2 $\Gamma\left(D_{n}\right)$ has $\sigma(n)+\tau(n)-2$ vertices.

Proof : $\Gamma\left(D_{n}\right)$ contains all subgroups of the form $\left\langle r^{d}\right\rangle$, where $d \mid n$ and $d \neq n$. We call this vertices of Type-I, and so number of Type-I vertices is $\tau(n)-1$. Similarly, $\Gamma\left(D_{n}\right)$ contains all subgroups of the form $\left\langle r^{d}, r^{i} s\right\rangle$, where $d \mid n$ and $0 \leq i \leq d-1$ except $d=1$. We call this vertices of Type-II, and so number of Type-II vertices is $\sigma(n)-1$.

Now, we investigate the adjacency between vertices of $\Gamma\left(D_{n}\right)$. It is clear that no two vertices of Type-I are adjacent. Thus, any edge of $\Gamma\left(D_{n}\right)$ occurs either between two vertices of Type-II or one of Type-I and one of Type-II. The edges in $\Gamma\left(D_{n}\right)$ are completely classified in the next theorem.

Theorem 3.2.1 The following are the edges of $\Gamma\left(D_{n}\right)$:

- A vertex $\left\langle r^{d_{1}}\right\rangle$ of Type-I is adjacent to a vertex $\left\langle r^{d_{2}}, r^{i} s\right\rangle$ of Type-II if and only if $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$.
- Two vertices $\left\langle r^{d_{1}}, r^{i} s\right\rangle$ and $\left\langle r^{d_{2}}, r^{j} s\right\rangle$ of Type-II are adjacent if and only if one of the two conditions hold:

1. $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$.
2. $\operatorname{gcd}\left(d_{1}, d_{2}\right)=2$ and $i-j$ is odd.

Proof :

- Let $H=\left\langle r^{d_{1}}\right\rangle$ and $K=\left\langle r^{d_{2}}, r^{i} s\right\rangle$. We start by noting that $H K=D_{n}$ if and only if $r \in H K$. If $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$, then there exist integers u, v such that $u d_{1}+v d_{2}=1$. Thus, $r=\left(r^{d_{1}}\right)^{u} \cdot\left(r^{d_{2}}\right)^{v} \in H K$. Conversely, as $r \notin H, K$, but $r \in H K$, we must get r as product of powers of $r^{d_{1}}$ and $r^{d_{2}}$, i.e., $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$.
- Let $H=\left\langle r^{d_{1}}, r^{i} s\right\rangle, K=\left\langle r^{d_{2}}, r^{j} s\right\rangle$ and $H \sim K$. Then $H K=D_{n}$. If $d=\operatorname{gcd}\left(d_{1}, d_{2}\right)$, then there exist integers x, y such that $d_{1} x+d_{2} y=d$, i.e., $r^{d}=\left(r^{d_{1}}\right)^{x}\left(r^{d_{2}}\right)^{y} \in H K=D_{n}$. Thus $\left\langle r^{d}\right\rangle \subseteq H K$. Note that r^{d} is the smallest power of r that can expressed as product of powers of $r^{d_{1}}$ and $r^{d_{2}}$. If $d \geq 3$, then r and r^{2} must be expressible as products of powers of $r^{d_{1}}, r^{i} s, r^{d_{2}}$ and $r^{j} s$, i.e., there exist integers $x_{1}, x_{2}, y_{1}, y_{2}$ such that
$d_{1} x_{1}+d_{2} x_{2}+(i-j) \equiv 1(\bmod n)$ and $d_{1} y_{1}+d_{2} y_{2}+(i-j) \equiv 2(\bmod n)$.

Subtracting, we get $d_{1} u+d_{2} v \equiv 1(\bmod n)$, i.e., d divides $d_{1} u+d_{2} v-1$, i.e., $d \mid 1$, a contradiction. Thus $d=1$ or 2 . If $d=1$, we are done. Suppose $d=2$ and
$i-j$ is even. Note that $d=2$ implies n is even. Now, as $r \in H K$, there exist integers x and y such that $d_{1} x+d_{2} y+(i-j) \equiv 1(\bmod n)$. But, $d_{1} x+d_{2} y+(i-j)$ is even and it can not be congruent to 1 modulo an even number n. Thus $i-j$ must be odd.

Conversely, let one of the conditions hold. If $d=1$, then any integer can be expressed as integer linear combination of d_{1} and d_{2}. Thus for any integer l, we have $r^{l}, r^{l} s \in H K$, i.e., $H K=D_{n}$. If $d=2$ and $i-j$ is odd, then n is even. As $d=2, r^{2}$ and all even powers of r can expressed as product of powers of $r^{d_{1}}$ and $r^{d_{2}}$ and they belong to $H K$. For odd powers of r to be in $H K$, we must have integers x, y such that

$$
\begin{gathered}
r^{d_{1} x+d_{2} y+(i-j)}=r^{2 t+1} \text {, i.e., } d_{1} x+d_{2} y+(i-j) \equiv 2 t+1(\bmod n) \\
2 u=2 t+1+j-i(\bmod n)
\end{gathered}
$$

Note that as $\operatorname{gcd}\left(d_{1}, d_{2}\right)=d=2$, for any integer u, we can find x and y such that $d_{1} x+d_{2} y=2 u$. Also, $2 t+1+j-i$ is even. Thus, we have

$$
u=\frac{2 t+1+j-i}{2}(\bmod n)
$$

Hence for all values of t, u has a solution and all odd powers of r lies in $H K$, i.e., $\langle r\rangle \subseteq H K$.

Again, note that $r^{d_{1} x+d_{2} y+i} s, r^{d_{1} x+d_{2} y+j} s \in H K$ for all values of x, y, i.e., $r^{2 l+i} s, r^{2 l+j} s \in H K$ for all value of l. As $i-j$ is odd, i and j has different parity, and hence by varying l suitably, all the elements of the
form $r^{k} s \in H K$. Thus $H K=D_{n}$, i.e., $H \sim K$.

In the next few theorems, we find the maximum and minimum degree of $\Gamma\left(D_{n}\right)$, and its number of isolated and pendant vertices.

Theorem 3.2.2 The maximum degree of $\Gamma\left(D_{n}\right)$ is $\sigma(n)-1$ and is attained by $\langle r\rangle$.

Proof : Among Type-I vertices, $\langle r\rangle$ has the maximum degree and its degree is

$$
\left(\sum_{d \mid n, d \neq 1} d\right)-1=\sigma(n)-1 .
$$

We claim that the degree of any Type-II vertex is less than $\sigma(n)-1$.
Case 1: (n is odd, say $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are odd primes). Let $H=\left\langle r^{d}, r^{i} s\right\rangle$ be a Type-II vertex with $d \mid n, d \neq 1$. Without loss of generality, let p_{1} be a prime divisor of d. Set $K=\left\langle r^{d}, s\right\rangle$ and $L=\left\langle r^{p_{1}}, s\right\rangle$. Clearly $K \subseteq L$. As n is odd, d is also odd. Thus we have
set of neighbours of $H=$ set of neighbours of $K \subseteq$ set of neighbours of L.

Thus $\operatorname{deg}(H)=\operatorname{deg}(K) \leq \operatorname{deg}(L)$. Consider the following two set of vertices

$$
A=\left\{\left\langle r^{d_{1}}, s\right\rangle: p_{1}\left|d_{1}, d_{1}\right| n\right\} \text { and } B=\left\{\left\langle r^{d_{1}}\right\rangle: p_{1} \nmid d_{1}\right\} .
$$

It is easy to check that all vertices in A are non-adjacent with L and B is the exactly the set of vertices of Type-I which are adjacent to L. Note that
$|A|=\alpha_{1}\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)$ and $|B|=\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)$. As there are total $(\sigma(n)-1)$ many Type-II vertices and $|A| \geq|B|$, we have

$$
\operatorname{deg}(H) \leq \operatorname{deg}(L) \leq(\sigma(n)-2)-|A|+|B| \leq \sigma(n)-2<\sigma(n)-1 .
$$

Case 2: $\left(n\right.$ is even, say $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where $p_{1}=2$ and other p_{i} 's are odd primes). Let $H=\left\langle r^{d}, r^{i} s\right\rangle$ be a Type-II vertex with $d \mid n, d \neq 1$ and p_{j} be a prime divisor of n. According as i is even or odd, set $K=\left\langle r^{d}, s\right\rangle$ or $\left\langle r^{d}, r s\right\rangle$ respectively, and $L=\left\langle r^{p_{j}}, s\right\rangle$ or $\left\langle r^{p_{j}}, r s\right\rangle$, respectively. As in Case 1, we have $\operatorname{deg}(H)=\operatorname{deg}(K) \leq \operatorname{deg}(L)$. Again, as in Case 1, construct the sets A and B. The rest follows similarly and $\operatorname{deg}(H)<\sigma(n)-1$. Thus the theorem follows.

Theorem 3.2.3 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. The number of isolated vertices in $\Gamma\left(D_{n}\right)$ is $\alpha_{1} \alpha_{2} \cdots \alpha_{k}-1$. Moreover, $\Gamma\left(D_{n}\right)$ is connected if and only if n is square-free.

Proof : Note that Type-II vertices are never isolated as they are always adjacent to $\langle r\rangle$. A Type-I vertex $\left\langle r^{d}\right\rangle$ is isolated if and only if $p \mid d$, for all primes $p \mid n$, i.e., if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, then the number of isolated vertices are $\alpha_{1} \alpha_{2} \cdots \alpha_{k}-1$.

As D_{n} is solvable, it is connected if and only if it has no isolated vertex if and only if $\alpha_{1} \alpha_{2} \cdots \alpha_{k}-1=0$ if and only if n is square-free.

Theorem 3.2.4 The minimum degree of $\Gamma^{*}\left(D_{n}\right)$ is given by

$$
\delta\left(\Gamma^{*}\left(D_{n}\right)\right)= \begin{cases}1, & \text { if } n \text { is odd } \\ 2, & \text { if } n \text { is even }\end{cases}
$$

Proof : If n is odd, then $\langle s\rangle$ is adjacent only to $\langle r\rangle$, and hence $\delta=1$. If n is even, then $\langle s\rangle$ is adjacent only to $\langle r\rangle$ and $\left\langle r^{2}, r s\right\rangle$. Thus degree of $\langle s\rangle$ is 2. We need to show that no vertex have degree 1. Note that every Type-II vertex is adjacent to $\langle r\rangle$ and exactly one of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$, i.e., degree of a Type-II vertex is ≥ 2. Let $\left\langle r^{d}\right\rangle$ be a non-isolated Type-I vertex. Then d misses atleast one prime factor of n, say p. Then $\left\langle r^{d}\right\rangle$ is adjacent to $\left\langle r^{p}, s\right\rangle$ and $\left\langle r^{p}, r s\right\rangle$, i.e., its degree is ≥ 2.

Corollary 3.2.3 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be odd. The number of pendant vertices in $\Gamma\left(D_{n}\right)$ is

$$
p_{1} p_{2} \cdots p_{k} \prod_{i=1}^{k} \frac{\left(p_{i}^{\alpha_{i}}-1\right)}{\left(p_{i}-1\right)}
$$

Proof : If n is even, by Theorem 3.2.4, the minimum degree is 2 and hence $\Gamma\left(D_{n}\right)$ has no pendant vertex. So, we assume that n is odd.

We start by observing that Type-I vertices of the form $\left\langle r^{d}\right\rangle$ are never pendant, as if $\left\langle r^{d}\right\rangle \sim\left\langle r^{x}, r^{i} s\right\rangle$, then $\left\langle r^{d}\right\rangle \sim\left\langle r^{x}, r^{j} s\right\rangle$ for $j \neq i$. Thus Type-II vertices are the only possible choices for pendant vertices.

Let $\left\langle r^{d}, r^{i} s\right\rangle$ be a pendant vertex. If $p_{i} \nmid d$ for some i, then $\left\langle r^{d}, r^{i} s\right\rangle$ is adjacent to at least two vertices, namely $\langle r\rangle$ and $\left\langle r^{p_{i}}\right\rangle$. Thus $p_{i} \mid d$ for all i.

Finally, if $p_{i} \mid d$ for all i, then it is easy to observe that $\left\langle r^{d}, r^{i} s\right\rangle$ is adjacent
only to $\langle r\rangle$. Now, the corollary follows by counting the number of such vertices.

Proposition 3.2.4 The girth of $\Gamma\left(D_{n}\right)$ is 3 for $n \geq 3$ and n is not an odd prime power.

Proof : If n is even, then $\langle r\rangle,\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$ forms a triangle. If n is odd, but not a prime power, then there exist two distinct prime factors, say p, q of n. Then $\langle r\rangle,\left\langle r^{p}, s\right\rangle$ and $\left\langle r^{q}, s\right\rangle$ forms a triangle.

Proposition 3.2.5 $\Gamma^{*}\left(D_{n}\right)$ is a star if and only if n is an odd prime power.

Proof : Let $n=p^{k}$ where p is an odd prime. Then all Type-I vertices except $\langle r\rangle$ are isolated in $\Gamma\left(D_{n}\right)$ and $\langle r\rangle$ is an universal vertex in $\Gamma^{*}\left(D_{n}\right)$. Now, as any Type-II vertex is of the form $\left\langle r^{p^{l}}, r^{i} s\right\rangle$, no two of them are adjacent and hence $\Gamma^{*}\left(D_{n}\right)$ is a star.

Conversely, if $\Gamma^{*}\left(D_{n}\right)$ is a star and n is not an odd prime power, by above Proposition, $\Gamma\left(D_{n}\right)$ has a triangle, a contradiction.

As D_{n} is a finite solvable group, by Theorem $2.2 .4, \Gamma^{*}\left(D_{n}\right)$ is connected and its diameter is less than or equal to 4 . In the next theorem, we compute the diameter of $\Gamma^{*}\left(D_{n}\right)$ and show that it is either 2 or 3 .

Theorem 3.2.5

$$
\operatorname{Diam}\left(\Gamma^{*}\left(D_{n}\right)\right)= \begin{cases}2, & n=p^{k} \\ 3, & \text { else }\end{cases}
$$

Proof : If n is an odd prime power, by Proposition $3.2 .5, \Gamma^{*}\left(D_{n}\right)$ is a star and hence $\operatorname{Diam}\left(\Gamma^{*}\left(D_{n}\right)\right)=2$. If $n=2^{k}$, then by Theorem $3.6[23], \Gamma^{*}\left(D_{n}\right)$ has an universal vertex and hence $\operatorname{Diam}\left(\Gamma^{*}\left(D_{n}\right)\right)=2$.

If n is not a prime power, then n has at least two distinct prime factors. Let $n=p^{\alpha} q^{\beta} m$, where m is coprime to p and q. Then consider the vertices $A=\left\langle r^{p^{a}}\right\rangle$ and $B=\left\langle r^{n / p^{a}}\right\rangle$. Clearly they are non-adjacent. As both are Type-I vertices, if they have a common neighbour, it must be a Type-II vertex, say $\left\langle r^{d}, r^{i} s\right\rangle$. But that means $d \mid n, d \neq 1$ and d is coprime to both p^{a} and n / p^{a}, a contradiction. Thus A and B have no common neighbour, i.e., $d(A, B)>2$. Consider the path $\left\langle r^{p^{a}}\right\rangle \sim\left\langle r^{q}, s\right\rangle \sim\left\langle r^{p}, s\right\rangle \sim\left\langle r^{n / p^{a}}\right\rangle$ and hence $d(A, B)=3$.

We claim that any two vertices are atmost at distance 3 from the other. If both the vertices are of Type-II, then they always have a common neighbour $\langle r\rangle$ and hence their distance is atmost 2. If both are of Type-I and are not isolated, say $\left\langle r^{d_{1}}\right\rangle$ and $\left\langle r^{d_{2}}\right\rangle$, then both d_{1} and d_{2} miss at least one prime factor of n, say p and q. If $p \neq q$, then $\left\langle r^{d_{1}}\right\rangle \sim\left\langle r^{p}, s\right\rangle \sim\left\langle r^{q}, s\right\rangle \sim\left\langle r^{d_{2}}\right\rangle$, i.e., their distance is atmost 3. If $p=q$, then $\left\langle r^{d_{1}}\right\rangle \sim\left\langle r^{p}, s\right\rangle \sim\left\langle r^{d_{2}}\right\rangle$, i.e., their distance is at most 2. Thus we are left with the case where one of the vertex is of Type-I and other is of Type-II, say $\left\langle r^{d_{1}}\right\rangle$ and $\left\langle r^{d_{2}}, r^{i} s\right\rangle$. As $\left\langle r^{d_{1}}\right\rangle$ is not isolated, d_{1} misses at least one prime factor of n, say p. Thus $\left\langle r^{d_{1}}\right\rangle \sim\left\langle r^{p}, s\right\rangle \sim\langle r\rangle \sim\left\langle r^{d_{2}}, r^{i} s\right\rangle$, i.e., their distance is at most 3. Hence the theorem follows.

In the next theorem, we check when $\Gamma^{*}\left(D_{n}\right)$ is Eulerian.

Theorem 3.2.6 $\Gamma^{*}\left(D_{n}\right)$ is Eulerian if and only if n is even and all odd prime factors of n are of even exponent.

Proof : Let $\Gamma^{*}\left(D_{n}\right)$ be Eulerian. If n is odd, by Theorem 3.2.4, minimum degree is 1, i.e., odd, a contradiction. So n must be even. Let n has an odd prime factor p of odd exponent α, i.e., $n=p^{\alpha} m$, where m is even and $p \nmid m$. Consider the vertex $\left\langle r^{m}\right\rangle$. Observe that its only neighbours are of the form $\left\langle r^{p^{*}}, r^{i} s\right\rangle$. Thus degree of $\left\langle r^{m}\right\rangle$ is $p+p^{2}+\cdots+p^{\alpha}$, i.e., odd, a contradiction. Hence all odd prime factors of n are of even exponent.

Conversely, let n be even and all odd prime factors of n are of even exponent. Let $n=2^{\alpha} p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where α_{i} 's are even. We will show that all non-isolated vertices have even degree.

Let us first consider the Type-I vertices of the form $\left\langle r^{d}\right\rangle$. If d is divisible by all the prime factors of n, then $\left\langle r^{d}\right\rangle$ is an isolated vertex. So, we assume that d is not divisible by some prime factors of n. Suppose $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{t}}$ are the prime factors of n not dividing d. Then the neighbours of $\left\langle r^{d}\right\rangle$ are
 Thus degree of $\left\langle r^{d}\right\rangle$ is $\sigma\left(p_{i_{1}}{ }^{\alpha_{i_{1}}} p_{i_{2}}{ }^{\alpha_{i_{2}}} \cdots p_{i_{t}}{ }^{\alpha_{i}}\right)-1$, which is even, as each α_{i} is even. Thus Type-I vertices are of even degree.

Now, we consider the Type-II vertices of the form $\left\langle r^{d}, r^{i} s\right\rangle$. If d is divisible by all the prime factors of n, then $\left\langle r^{d}, r^{i} s\right\rangle$ has precisely two neighbours, $\langle r\rangle$ and exactly one of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$. So, we assume that d is not divisible by some prime factors of n. Suppose $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{t}}$ are the prime factors of n not dividing d.

Case 1: $(2 \nmid d)$ In this case, the neighbours of $\left\langle r^{d}, r^{i} s\right\rangle$ are of the form
 the degree of $\left\langle r^{d}, r^{i} s\right\rangle$ is

$$
\tau\left(p_{i_{1}}{ }^{\alpha_{i_{1}}} p_{i_{2}}{ }^{\alpha_{2}} \cdots p_{i_{t}}{ }^{\alpha_{i t}}\right)+\sigma\left(p_{i_{1}}{ }^{\alpha_{i_{1}}} p_{i_{2}}{ }^{\alpha_{2}} \cdots p_{i_{t}}{ }^{\alpha_{i t}}\right)-2,
$$

which is even, as explained earlier.
Case 2: $(2 \mid d)$ In this case, apart from the neighbours mentioned in Case 1, $\left\langle r^{d}, r^{i} s\right\rangle$ has neighbours of the form $\left\langle 2^{\left.2^{\beta} p_{i_{1}}{ }^{\beta_{1}} p_{i_{2}}{ }^{\beta_{2} \ldots} p_{i_{t}}{ }^{\beta_{t}}, r^{j} s\right\rangle \text {, where } i-j ; ~}\right.$ is odd. However, proceeding similarly as above, it can be shown that the number of such neighbours is also even. As a result the degree of Type-II vertices are also even. This proves the theorem.

3.2.2 Domination number, Chromatic Number and Perfectness of $\Gamma\left(D_{n}\right)$

In this section, we study the domination number, chromatic number of $\Gamma\left(D_{n}\right)$ and characterize when $\Gamma\left(D_{n}\right)$ is perfect.

Theorem 3.2.7 The domination number of $\Gamma^{*}\left(D_{n}\right)$ is given by

$$
\gamma\left(\Gamma^{*}\left(D_{n}\right)\right)= \begin{cases}1, & \text { if } n \text { is a prime power }, \\ \pi(n)+1, & \text { otherwise }\end{cases}
$$

Proof : If n is a prime power, by Proposition 3.2.5, $\Gamma^{*}\left(D_{n}\right)$ is a star and hence the theorem follows. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. Clearly $\left\{\langle r\rangle,\left\langle r^{p_{1}}, s\right\rangle,\left\langle r^{p_{2}}, s\right\rangle, \ldots,\left\langle r^{p_{k}}\right.\right.$ is a dominating set of $\Gamma^{*}\left(D_{n}\right)$ and hence $\gamma\left(\Gamma^{*}\left(D_{n}\right)\right) \leq k+1$.

If possible, let $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a dominating set of size k. Set $m=$ $p_{1} p_{2} \cdots p_{k}$ and consider the set of $k+1$ vertices $A=\left\{\left\langle r^{m / p_{1}}\right\rangle,\left\langle r^{m / p_{2}}\right\rangle, \ldots,\left\langle r^{m / p_{k}}\right\rangle,\left\langle r^{m}, s\right\rangle\right.$ Among these $k+1$ vertices, at least one of them is not in S. Without loss of generality, let $\left\langle r^{m / p_{1}}\right\rangle \notin S$ and $\left\langle r^{m / p_{1}}\right\rangle \sim x_{1}$. Then x_{1} is of the form $\left\langle r^{p_{1}^{\beta_{1}}}, r^{i_{1}} s\right\rangle$. Note that x_{1} is not adjacent to any one of k vertices in the set $A^{\prime}=\left\{\left\langle r^{m / p_{2}}\right\rangle, \ldots,\left\langle r^{m / p_{k}}\right\rangle,\left\langle r^{m}, s\right\rangle\right\}$. By similar argument, not all of these k vertices in A^{\prime} belong to S. Without loss of generality, let $\left\langle r^{m / p_{2}}\right\rangle \notin S$ and $\left\langle r^{m / p_{1}}\right\rangle \sim x_{2}$. Proceeding similarly, we get $x_{2}=\left\langle r^{p_{2}^{\beta_{2}}}, r^{i_{2}} s\right\rangle, \ldots, x_{k}=\left\langle r^{p_{k}^{\beta_{k}}}, r^{i_{k}} s\right\rangle$.

If n is odd, then $\left\langle r^{m}, s\right\rangle$ is not adjacent to any x_{i}, a contradiction. If n is even, then either $\left\langle r^{m}, s\right\rangle$ or $\left\langle r^{m}, r s\right\rangle$ is not dominated by any x_{i}, a contradiction. Hence, $\gamma\left(\Gamma^{*}\left(D_{n}\right)\right)=k+1$.

Theorem 3.2.8 $\Gamma\left(D_{n}\right)$ is weakly perfect, i.e., the clique number and chromatic number of $\Gamma\left(D_{n}\right)$ are given by

$$
\chi\left(\Gamma\left(D_{n}\right)\right)=\omega\left(\Gamma\left(D_{n}\right)\right)= \begin{cases}\pi(n)+1, & \text { if } n \text { is odd } \\ \pi(n)+2, & \text { if } n \text { is even } .\end{cases}
$$

Proof : We first deal with the case when n is odd, say $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are distinct odd primes. Consider the set $A=\left\{\langle r\rangle,\left\langle r^{p_{1}}, s\right\rangle,\left\langle r^{p_{2}}, s\right\rangle, \ldots,\left\langle r^{p_{k}}\right.\right.$, Clearly A forms a clique of size $k+1=\pi(n)+1$, i.e., $\omega\left(\Gamma\left(D_{n}\right)\right) \geq \pi(n)+1$. Let M be a maximum clique of $\Gamma\left(D_{n}\right)$ of size $t \geq k+2$. If M contains only vertices of Type-II, then $M \cup\langle r\rangle$ is a clique properly containing M, a contradiction. Thus M always contains a vertex of Type-I. As no two
vertices of Type-I are adjacent, M can have exactly one vertex of Type-I. Without loss of generality, we can assume the Type-I vertex in M to be $\langle r\rangle$. Let $M=\left\{\langle r\rangle,\left\langle r^{a_{1}}, r^{b_{1}} s\right\rangle,\left\langle r^{a_{2}}, r^{b_{2}} s\right\rangle, \ldots,\left\langle r^{a_{t-1}}, r^{b_{t-1}} s\right\rangle\right\}$. Thus a_{1}, a_{2}, a_{t-1} are mutually coprime factors of n and $a_{i} \neq 1$. But as n has $\pi(n)$ distinct prime factors, it can have atmost $\pi(n)=k<t-1$ mutually coprime factors. Thus $\omega\left(\Gamma\left(D_{n}\right)\right)=\pi(n)+1$.

Similarly, if n is even, i.e., $n=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, it can be easily checked that $B=\left\{\langle r\rangle,\left\langle r^{2}, s\right\rangle,\left\langle r^{2}, r s\right\rangle,\left\langle r^{p_{2}}, s\right\rangle, \ldots,\left\langle r^{p_{k}}, s\right\rangle\right\}$ is a clique of size $k+2=$ $\pi(n)+2$. Thus $\omega\left(\Gamma\left(D_{n}\right)\right) \geq \pi(n)+2$. Let M be a maximum clique of $\Gamma\left(D_{n}\right)$ of size t. As in the previous case, M have exactly one vertex of Type-I. Let $M=\left\{\langle r\rangle,\left\langle r^{a_{1}}, r^{b_{1}} s\right\rangle,\left\langle r^{a_{2}}, r^{b_{2}} s\right\rangle, \ldots,\left\langle r^{a_{t-1}}, r^{b_{t-1}} s\right\rangle\right\}$. Arguing as in the previous case, the number of odd divisors of n among a_{1}, a_{2}, a_{t-1} is atmost $k-1$. Again due to the adjacency condition of Type-II vertices, the number of odd divisors of n among a_{1}, a_{2}, a_{t-1} is atmost 2 . Thus M can have atmost $1+2+(k-1)=k+2$ vertices, i.e., $\omega\left(\Gamma\left(D_{n}\right)\right)=\pi(n)+2$.

As $\chi \geq \omega$, it suffices to produce a proper colouring using ω colours. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is odd, define

$$
\begin{gathered}
A_{1}=\left\{\left\langle r^{d}\right\rangle,\left\langle r^{d}, r^{i} s\right\rangle: p_{1} \mid d\right\}, A_{2}=\left\{\left\langle r^{d}\right\rangle,\left\langle r^{d}, r^{i} s\right\rangle: p_{2} \mid d\right\} \backslash A_{1}, \cdots, \\
A_{j}=\left\{\left\langle r^{d}\right\rangle,\left\langle r^{d}, r^{i} s\right\rangle: p_{j} \mid d\right\} \backslash \bigcup_{l=1}^{j-1} A_{l}, \text { where } j=1,2, \ldots, k .
\end{gathered}
$$

Observe that $A_{1}, A_{2}, \ldots, A_{k}$ are independent sets in $\Gamma\left(D_{n}\right)$. We assign the colour j to all the vertices in A_{j} and the $k+1$ the colour to $\langle r\rangle$. It can be
easily checked that this is a proper colouring of $\Gamma\left(D_{n}\right)$ using $k+1=\pi(n)+1$ colours.

Similarly, if n is even, we construct similar independent sets for each prime as above, with the following exception for the prime 2. For the prime 2 , we construct two sets $X=\left\{\left\langle r^{d}\right\rangle,\left\langle r^{d}, r^{i} s\right\rangle: 2 \mid d, i\right.$ is odd $\}$ and $Y=$ $\left\{\left\langle r^{d}\right\rangle,\left\langle r^{d}, r^{i} s\right\rangle: 2 \mid d, i\right.$ is even $\}$. One can easily check that this gives a proper colouring $\Gamma\left(D_{n}\right)$ using $\pi(n)+2$ colours.

Theorem 3.2.9 $\Gamma\left(D_{n}\right)$ is perfect if and only if one of the two conditions hold:

- n is odd and $\pi(n) \leq 4$.
- n is even and either $\pi(n) \leq 2$ or $\pi(n)=3$ and $4 \nmid n$.

Proof : If n is odd and $\pi(n) \geq 5$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{5}^{\alpha_{5}} m$, where p_{i} 's are odd primes which are coprime to m. Then $\left\langle r^{p_{1} p_{2}}, s\right\rangle \sim\left\langle r^{p_{3} p_{4}}, s\right\rangle \sim\left\langle r^{p_{2} p_{5}}, s\right\rangle \sim$ $\left\langle r^{p_{1} p_{4}}, s\right\rangle \sim\left\langle r^{p_{3} p_{5}}, s\right\rangle \sim\left\langle r^{p_{1} p_{2}}, s\right\rangle$ is an induced 5-cycle in $\Gamma\left(D_{n}\right)$ and hence $\Gamma\left(D_{n}\right)$ is not perfect.

Let n be odd and $\pi(n) \leq 4$. Let $C: x_{1} \sim x_{2} \sim \cdots \sim x_{2 t+1} \sim x_{1}$ be an induced odd cycle in $\Gamma\left(D_{n}\right)$. As n is odd and any subgroup of D_{n} is of the form $\left\langle r^{d}\right\rangle$ or $\left\langle r^{d}, r^{i} s\right\rangle$, it follows from the adjacency condition that $\left\langle r^{d_{1}}\right\rangle \sim\left\langle r^{d_{2}}, r^{i} s\right\rangle$ or $\left\langle r^{d_{1}}, r^{i} s\right\rangle \sim\left\langle r^{d_{2}}, r^{j} s\right\rangle$ if and only if $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. Thus for each vertex x_{i} in C we can associate a factor d_{i} of n such that $x_{i} \sim x_{j}$ if and only if $\operatorname{gcd}\left(d_{i}, d_{j}\right)=1$. Now, by following the steps in the proof of Theorem 3.2 in [39], one can show that $\Gamma\left(D_{n}\right)$ is perfect.

If n is even and $\pi(n) \geq 4$, let $n=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{4}^{\alpha_{4}} m$, where p_{i} 's are odd primes which are coprime to m. Then $\left\langle r^{p_{2}}\right\rangle \sim\left\langle r^{2 p_{2} p_{3}}, r s\right\rangle \sim\left\langle r^{p_{3} p_{4}}\right\rangle \sim$ $\left\langle r^{2 p_{4}}, r^{2} s\right\rangle \sim\left\langle r^{2 p_{2}}, s\right\rangle \sim\left\langle r^{p_{2}}\right\rangle$ is an induced 5 -cycle in the complement of $\Gamma\left(D_{n}\right)$ and hence $\Gamma\left(D_{n}\right)$ is not perfect.

If $\pi(n)=3$ and $4 \mid n$, let $n=2^{\alpha} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$ where p_{i} 's are odd primes. Then $\left\langle r^{p_{1}}\right\rangle \sim\left\langle r^{4}, s\right\rangle \sim\left\langle r^{p_{2}}\right\rangle \sim\left\langle r^{2 p_{1}}, s\right\rangle \sim\left\langle r^{4 p_{2}}, r s\right\rangle \sim\left\langle r^{p_{1}}\right\rangle$ is an induced 5-cycle in the complement of $\Gamma\left(D_{n}\right)$ and hence $\Gamma\left(D_{n}\right)$ is not perfect.

Thus, if n is even, we are left with two cases, either $n=2^{\alpha} p_{2}^{\alpha_{2}}$ or $n=$ $2 p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$. These two cases are dealt with in the following two lemmas.

Lemma 3.2.6 If $n=2^{\alpha} p_{2}^{\alpha_{2}}$, then $\Gamma\left(D_{n}\right)$ is perfect.
Proof : Note that any vertex of the form $\left\langle r^{d}\right\rangle$ or $\left\langle r^{d}, r^{i} s\right\rangle$ where $2 p_{2} \mid d$ are of degree 0 or 2 respectively in $\Gamma\left(D_{n}\right)$. In fact, $\left\langle r^{d}, r^{i} s\right\rangle$ is adjacent to exactly two vertices, namely $\langle r\rangle$ and exactly one of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$. If possible, let $C: x_{1} \sim x_{2} \sim \cdots \sim x_{2 t+1} \sim x_{1}$ be an induced odd cycle of length atleast 5 in $\Gamma\left(D_{n}\right)$. Clearly C must have atleast one Type-II vertex. As $\langle r\rangle$ does not lie on C, any vertex of the form $\left\langle r^{d}, r^{i} s\right\rangle$ where $2 p_{2} \mid d$ does not lie on C.

Claim A: If $x_{1}=\left\langle r^{d_{1}}, r^{i} s\right\rangle$ is a Type-II vertex on C, then d_{1} is even. Proof of Claim A: If d_{1} is odd, then $d_{1}=p_{2}^{\beta}$. As $x_{1} \nsucc x_{3}, x_{4}$, we have $x_{3}=\left\langle r^{p_{2}^{a}}\right\rangle$ or $\left\langle r^{p_{2}^{a}}, r^{j} s\right\rangle$ and $x_{4}=\left\langle r^{p_{2}^{b}}\right\rangle$ or $\left\langle r^{p_{2}^{b}}, r^{k} s\right\rangle$. In any case, we have $x_{3} \nsim x_{4}$, a contradiction.

Claim B: There exists no Type-I vertex on C.
Proof of Claim B: If there exists two vertices, say x_{1}, x_{k} of Type-I on C. Clearly they must be non-adjacent. Using Claim A, $x_{1}=\left\langle r^{p_{2}^{B}}\right\rangle$ and $x_{k}=$
$\left\langle r^{p_{2}^{\beta^{\prime}}}\right\rangle$. But as $x_{2}, x_{2 t+1} \sim x_{1}$, we must have $x_{k} \sim x_{2}, x_{2 t+1}$, a contradiction. So atmost one Type-I vertex can be on C, say $x_{1}=\left\langle r^{p_{2}^{\beta}}\right\rangle$. As $x_{1} \nsim x_{3}, x_{4}$ and both are Type-II vertices, by Claim A, we must have $x_{3}=\left\langle r^{d_{3}}, r^{i} s\right\rangle$ and $x_{4}=\left\langle r^{d_{4}}, r^{j} s\right\rangle$ where $2 p_{2}$ divides d_{3} and d_{4}. However such vertices do not lie on C.

Thus all the vertices on C are of Type-II, i.e., $x_{l}=\left\langle r^{d_{l}}, r^{i_{l}} s\right\rangle$ for $l=$ $1,2, \ldots, 2 t+1$ where d_{l} 's are even. Again from the adjacency condition, we have all of $i_{1}-i_{2}, i_{2}-i_{3}, \ldots, i_{2 t+1}-i_{1}$ to be odd. Adding all of them, we get the sum of odd number of odd integers to be zero, a contradiction. Thus $\Gamma\left(D_{n}\right)$ has no induced odd cycle of length atleast 5 . Similarly, it can be shown that $\Gamma\left(D_{n}\right)^{c}$ has no induced odd cycle of length atleast 5. Hence $\Gamma\left(D_{n}\right)$ is perfect.

Lemma 3.2.7 If $n=2^{\alpha} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$, then $\Gamma\left(D_{n}\right)$ is perfect

Proof : If possible, let $C: x_{1} \sim x_{2} \sim \cdots \sim x_{2 t+1} \sim x_{1}$ be an induced odd cycle of length atleast 5 in $\Gamma\left(D_{n}\right)$. As no two Type-I vertices are adjacent, thus we must have atleast $t+1 \geq 3$ Type-II vertices in C.

Claim 1: $\left\langle r^{d}, r^{i} s\right\rangle$, where $2 p_{1} p_{2} \mid d$ does not lie in C.
Proof of Claim 1: Its only neighbours are $\langle r\rangle$ and exactly one of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$. As $\langle r\rangle$ is adjacent to all Type-II vertices and there are atleast 3 Type-II vertices in $C,\langle r\rangle$ does not lie on C. Thus $\left\langle r^{d}, r^{i} s\right\rangle$ can have atmost one neighbour in C, which is a contradiction as C is a cycle.

Claim 2: None of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$ lie in C.
Proof of Claim 2: If $x_{1}=\left\langle r^{2}, s\right\rangle$ lies in C, then as $\left\langle r^{2}, s\right\rangle$ is a maximal
subgroup of index 2 in D_{n}, all of $x_{3}, x_{4}, \ldots, x_{2 t}$ are contained in x_{1}. Thus, using Claim 1, without of loss of generality, we can assume that $x_{3}=$ $\left\langle r^{2 p_{1}^{\beta_{1}}}, r^{i} s\right\rangle$ and $x_{3}=\left\langle r^{2 p_{2}^{\beta_{2}}}, r^{j} s\right\rangle$. As $x_{3} \sim x_{4}$, we have $i-j$ is odd. On the other hand, as $x_{1} \not \nsim x_{3}, x_{4}$, we must have i and j to be both even. This contradicts the parity of $i-j$.

Claim 3: Vertices of the form $\left\langle r^{p_{1}^{\beta_{1}} p_{2}^{\beta_{2}}}\right\rangle$ and $\left\langle r^{p_{1}^{\beta_{1}} p_{2}^{\beta_{2}}}, r^{i} s\right\rangle$ do not lie in C. Proof of Claim 3: As $\left\langle r_{1}^{p_{1}^{\beta_{1}} p_{2}^{\beta_{2}}}\right\rangle$ is adjacent only with $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$, the
 $\Gamma\left(D_{n}\right)$ are $\langle r\rangle,\left\langle r^{2}\right\rangle$ and exactly one of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$. However, from Claim 2, its only possible neighbour in C is $\left\langle r^{2}\right\rangle$, a contradiction. Hence Claim 3 holds.

Claim 4: $\left\langle r^{2}\right\rangle$ lies in C.
Proof of Claim 4: Suppose $\left\langle r^{2}\right\rangle$ does not in C. Then from Claims 1,2 and 3, it follows that for any vertex $\left\langle r^{d_{i}}\right\rangle$ or $\left\langle r^{d_{i}}, r^{i} s\right\rangle$ in C, d_{i} must be of the form $p_{1}^{\beta_{1}}, p_{2}^{\beta_{2}}, 2 p_{1}^{\beta_{1}}$ or $2 p_{2}^{\beta_{2}}$. Again, as C is cycle, d_{i} must be alternately divisible by p_{1} and p_{2}. But this contradicts that C is an odd cycle. Thus the claim follows.

Let $x_{1}=\left\langle r^{2}\right\rangle$ be a vertex on C. As x_{1} is a Type-I vertex, from the adjacency condition and previous claims, without loss of generality, we have $x_{2}=\left\langle r^{p_{1}^{\beta}}, r^{i} s\right\rangle$ and $x_{2 t+1}=\left\langle r^{p_{1}^{\beta^{\prime}}}, r^{j} s\right\rangle$. Then x_{3} must be of one of the 4 forms, namely $\left\langle r^{r_{2}^{\beta_{2}}}\right\rangle,\left\langle r^{p_{2}^{\beta_{2}}}, r^{j} s\right\rangle,\left\langle r^{2 p_{2}^{\beta_{2}}}\right\rangle$ and $\left\langle r^{\left.2 p_{2}^{\beta_{2}}, r^{j} s\right\rangle \text {. However, in any case, we }}\right.$ have $x_{3} \sim x_{2 t+1}$, a contradiction. Thus $\Gamma\left(D_{n}\right)$ has no induced odd cycle of length atleast 5 .

3.2.3 Isomorphisms of $\Gamma\left(D_{n}\right)$

In this section, we discuss some isomorphism results of $\Gamma\left(D_{n}\right)$. The first result (Theorem 3.2.10) shows that co-maximal graph of D_{n} uniquely determines n. The second result (Theorem 3.2.11) is more general in nature. It shows that nilpotent dihedral groups are uniquely determined by their comaximal subgroup graphs.

Lemma 3.2.8 Let n and m be two positive integers such that $\Gamma\left(D_{n}\right) \cong$ $\Gamma\left(D_{m}\right)$. Then n and m are of same factorization type.

Proof : As $\Gamma\left(D_{n}\right) \cong \Gamma\left(D_{m}\right)$, from Theorem 3.2.4, it follows that n and m have same parity. Thus, by Theorem 3.2.8, $\pi(n)=\pi(m)$, i.e., m and n have same number of distinct prime factors. So we assume that $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and $m=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{k}^{\beta_{k}}$.

Consider the Type-I vertices other than $\langle r\rangle$ in $\Gamma\left(D_{n}\right)$. Note that $\left\{\left\langle r^{p_{1}}\right\rangle,\left\langle r^{p_{1}^{2}}\right\rangle, \cdots,\left\langle r^{p}\right.\right.$ is one of the twin class of size α_{1}. Similarly, we get twin classes of size $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{k}$. Again, note $\left\{\left\langle r^{p_{1} p_{2}}\right\rangle,\left\langle r^{p_{1}^{2} p_{2}}\right\rangle, \cdots,\left\langle r^{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}}\right\rangle\right\}$ is a twin class of size $\alpha_{1} \alpha_{2}$. Proceeding this way, Type-I vertices other than $\langle r\rangle$, can be partitioned into twin classes of size

$$
\mathcal{P}_{n}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{1} \alpha_{2}, \alpha_{2} \alpha_{3}, \ldots, \alpha_{1} \alpha_{2} \cdots \alpha_{k}\right\} .
$$

Similarly for $\Gamma\left(D_{m}\right)$, we get

$$
\mathcal{P}_{m}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}, \beta_{1} \beta_{2}, \beta_{2} \beta_{3}, \ldots, \beta_{1} \beta_{2} \cdots \beta_{k}\right\} .
$$

As $\Gamma\left(D_{n}\right) \cong \Gamma\left(D_{m}\right)$, we have $\mathcal{P}_{n}=\mathcal{P}_{m}$. If $\alpha_{i}=\beta_{\sigma(i)}$ for some $\sigma \in S_{k}$, we are done. If no α_{i} is equal to any β_{j}, then without loss of generality, let $\alpha_{1}=\min \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$. Therefore, $\alpha_{1}<\beta_{i}$ for all i. Thus $\alpha_{1} \in \mathcal{P}_{n}$, but $\alpha_{1} \in \mathcal{P}_{m}$, as $\beta_{i}>\alpha_{1}$. This contradicts the fact $\mathcal{P}_{n}=\mathcal{P}_{m}$. Thus some α_{i} 's are equal to some β_{j}. By suitable renaming, let $\alpha_{1}=\beta_{1}, \alpha_{2}=$ $\beta_{2}, \ldots, \alpha_{i}=\beta_{i}$ and none of $\alpha_{i+1}, \ldots, \alpha_{k}$ is not equal to any of $\beta_{i+1}, \ldots, \beta_{k}$. Therefore each of $\alpha_{i+1}, \ldots, \alpha_{k}$ is product of atleast two β_{j} 's. Similarly, each of $\beta_{i+1}, \ldots, \beta_{k}$ is product of atleast two α_{j} 's.

We remove all the terms involving $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$ from \mathcal{P}_{n} to get a new set \mathcal{P}_{n}^{\prime}. Similarly, we remove all the terms involving $\beta_{1}, \beta_{2}, \ldots, \beta_{i}$ from \mathcal{P}_{m} to get a new set \mathcal{P}_{m}^{\prime}. Hence we have $\mathcal{P}_{n}^{\prime}=\mathcal{P}_{m}^{\prime}$.

Let $\alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{t}}$ be the smallest element of \mathcal{P}_{n}^{\prime}. Then at least one of $\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{t}}$ does not belong to $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right\}$. Let $\alpha_{i_{1}} \notin\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right\}$. Then $\alpha_{i_{1}} \in \mathcal{P}_{n}^{\prime}$ and $\alpha_{i_{1}} \leq \alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{t}}$. Thus $\alpha_{i_{1}}$ is also smallest in $\mathcal{P}_{n}^{\prime}=\mathcal{P}_{m}^{\prime}$.

Therefore $\alpha_{i_{1}}=\beta_{j_{1}} \beta_{j_{2}} \cdots \beta_{j_{t}} \in \mathcal{P}_{m}^{\prime}$. Arguing similarly, without loss of generality, $\beta_{j_{1}}$ is the smallest element in \mathcal{P}_{m}^{\prime}. Thus $\alpha_{i_{1}}=\beta_{j_{1}}$, a contradiction. Hence, $\alpha_{i}=\beta_{\sigma(i)}$ for some $\sigma \in S_{k}$ and the theorem follows.

Theorem 3.2.10 Let n and m be two positive integers such that $\Gamma\left(D_{n}\right) \cong$ $\Gamma\left(D_{m}\right)$. Then $n=m$.

Proof : From Lemma 3.2.8, we get that $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and $m=$ $q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{k}^{\alpha_{k}}$. Thus, it suffices to show that $p_{i}=q_{i}$ for all i. We consider the case when both m and n are odd. The case when both m and n are even can be handled similarly.

Consider the maximum clique $A=\left\{\langle r\rangle,\left\langle r^{p_{1}}, s\right\rangle,\left\langle r^{p_{2}}, s\right\rangle, \ldots,\left\langle r^{p_{k}}, s\right\rangle\right\}$ of $\Gamma^{*}\left(D_{n}\right)$ as defined in the proof of Theorem 3.2.8. Note that it contains exactly one vertex of Type-I and k-vertices of Type-II. As $\Gamma\left(D_{n}\right) \cong \Gamma\left(D_{m}\right)$, under any isomorphism, A is mapped to a maximum clique B of $\Gamma^{*}\left(D_{m}\right)$. Without loss of generality,

$$
B=\left\{\langle r\rangle,\left\langle r^{q_{1}}, r^{i_{1}} s\right\rangle,\left\langle r^{q_{2}}, r^{i_{2}} s\right\rangle, \ldots,\left\langle r^{q_{k}}, r^{i_{k}} s\right\rangle\right\} .
$$

Now, consider the number of Type-I and Type-II neighbours of Type-II vertices in A. For example, $\left\langle r^{p_{i}}, s\right\rangle$ has $\left(\tau\left(n / p_{i}{ }^{\alpha_{i}}\right)-1\right)$ many Type-I neighbours and ($\sigma\left(n / p_{i}^{\alpha_{i}}\right)-1$) many Type-II neighbours in $\Gamma^{*}\left(D_{n}\right)$. Similarly, we can compute the number of Type-I and Type-II neighbours of TypeII vertices in B. As $\Gamma\left(D_{n}\right) \cong \Gamma\left(D_{m}\right)$, the following two sets consisting of ordered pairs are equal.

$$
\begin{aligned}
& \left\{\left(\tau\left(n / p_{1}^{\alpha_{1}}\right), \sigma\left(n / p_{1}{ }^{\alpha_{1}}\right)\right),\left(\tau\left(n / p_{2}^{\alpha_{2}}\right), \sigma\left(n / p_{2}^{\alpha_{2}}\right)\right), \ldots,\left(\tau\left(n / p_{k}^{\alpha_{k}}\right), \sigma\left(n / p_{k}^{\alpha_{k}}\right)\right)\right\} \\
& \quad=\left\{\left(\tau\left(m / q_{1}{ }^{\alpha_{1}}\right), \sigma\left(m / q_{1}^{\alpha_{1}}\right)\right),\left(\tau\left(m / q_{2}^{\alpha_{2}}\right), \sigma\left(m / q_{2}^{\alpha_{2}}\right)\right), \ldots,\left(\tau\left(m / q_{k}^{\alpha_{k}}\right), \sigma\left(m / q_{k}^{\alpha_{k}}\right)\right)\right\}
\end{aligned}
$$

Again, as $\tau(m)=\tau(n), \sigma(m)=\sigma(n)$ and τ, σ are multiplicative functions, we have

$$
\begin{aligned}
& \left\{\left(\tau\left(p_{1}{ }^{\alpha_{1}}\right), \sigma\left(p_{1}{ }^{\alpha_{1}}\right)\right),\left(\tau\left(p_{2}^{\alpha_{2}}\right), \sigma\left(p_{2}^{\alpha_{2}}\right)\right), \ldots,\left(\tau\left(p_{k}^{\alpha_{k}}\right), \sigma\left(p_{k}^{\alpha_{k}}\right)\right)\right\} \\
& \quad=\left\{\left(\tau\left(q_{1}^{\alpha_{1}}\right), \sigma\left(q_{1}^{\alpha_{1}}\right)\right),\left(\tau\left(q_{2}^{\alpha_{2}}\right), \sigma\left(q_{2}^{\alpha_{2}}\right)\right), \ldots,\left(\tau\left(q_{k}^{\alpha_{k}}\right), \sigma\left(q_{k}^{\alpha_{k}}\right)\right)\right\}
\end{aligned}
$$

As these two sets are equal, there exists i such that $\left(\tau\left(p_{1}{ }^{\alpha_{1}}\right), \sigma\left(p_{1}{ }^{\alpha_{1}}\right)\right)=$ $\left(\tau\left(q_{i}^{\alpha_{i}}\right), \sigma\left(q_{i}^{\alpha_{i}}\right)\right)$, i.e., $\alpha_{1}=\alpha_{i}$ and hence $\sigma\left(p_{1}^{\alpha_{1}}\right)=\sigma\left(q_{i}^{\alpha_{1}}\right)$, i.e., $p_{1}=q_{i}$. Similarly, it can be shown that set of prime factors of m and n are same and as a result, $m=n$.

Theorem 3.2.11 Let G be a finite solvable group such that $\Gamma(G) \cong \Gamma\left(D_{2^{\alpha}}\right)$. Then $G \cong D_{2^{\alpha}}$.

Proof : As $\Gamma^{*}\left(D_{2^{\alpha}}\right)$ has a unique universal vertex, namely $\langle r\rangle$ and all other Type-I vertices are isolated, we get a subgroup H which is the unique universal vertex in $\Gamma^{*}(G)$.

Claim 1: H is a maximal subgroup G and $H \triangleleft G$.
Proof of Claim 1: If there exists a proper subgroup X of G such that $H \subsetneq X$, then $\operatorname{deg}(H) \leq \operatorname{deg}(X)$ in $\Gamma(G)$, a contradiction. Thus H is a maximal subgroup of G. If H is not normal in G, there exists $g \in G$ such that $H^{\prime}=g H g^{-1} \neq H$. Note that $K \sim H$ if and only if $g K g^{-1} \sim g H g^{-1}$, i.e., $\operatorname{deg}(H)=\operatorname{deg}\left(H^{\prime}\right)$, a contradiction. Thus $H \triangleleft G$.

From Claim 1, it follows that G / H is a prime order group, i.e., $[G: H]=$ p, for some prime p. Thus $|G|=p^{a} m$ and $|H|=p^{a-1} m$, where $p \nmid m$.

Claim 2: G is a group of prime power order.
Proof of Claim 2: Let q be a prime factor of m and K be a Sylow q-subgroup of G. If $K \nsubseteq H$, then $K H=G$, i.e.,
$p^{a} m=\frac{\left(q^{b}\right)\left(p^{a-1} m\right)}{|H \cap K|}=\frac{\left(q^{b}\right)\left(p^{a-1} m\right)}{q^{t}}=q^{b-t} p^{a-1} m$, i.e., $q^{b-t}=p$, a contradiction.

Thus if q is a prime factor of m, then every Sylow q-subgroup K of G is contained in H. Thus K corresponds to a Type-I vertex in $\Gamma\left(D_{2^{\alpha}}\right)$ and hence, if $K \neq H$, then K is an isolated vertex in $\Gamma\left(D_{2^{\alpha}}\right)$. However, as G is solvable, K has a Hall complement L of order $p^{a} m / q^{b}$ in G, i.e., $K L=G$, i.e., $K \sim L$. Thus either m has no prime factor, i.e., $m=1$ or $K=H$. If $m=1$, then G is p-group and the claim holds. If $K=H$, then $|H|=q^{b}$, i.e., $a=1$ and $|G|=p q^{b}$.

Again, note that $\Gamma^{*}\left(D_{2^{\alpha}}\right)$ has exactly two Type-II vertices of second highest degree, namely $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$ and every other Type-II vertices is adjacent to exactly one of $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$. Let K_{1}, K_{2} be the two vertices in $\Gamma^{*}(G)$ corresponding to $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, r s\right\rangle$ respectively. As H is the universal vertex in $\Gamma^{*}(G)$, we have $H \sim K_{1}$ and $H \sim K_{2}$, i.e., $K_{1}, K_{2} \nsubseteq H$. Thus $\left|K_{1}\right|=p q^{t_{1}}$ and $\left|K_{2}\right|=p q^{t_{2}}$. Again, as $\left\langle r^{2}, s\right\rangle \sim\left\langle r^{2}, r s\right\rangle$, we have $K_{1} \sim K_{2}$, i.e., $K_{1} K_{2}=G$, i.e.,

$$
p q^{b}=\frac{p q^{t_{1}} \cdot p q^{t_{2}}}{\left|K_{1} \cap K_{2}\right|} \text {, i.e., }\left|K_{1} \cap K_{2}\right|=p q^{t_{1}+t_{2}-b} .
$$

If $p \neq q, K_{1} \cap K_{2} \nsubseteq H$, i.e., $H \sim K_{1} \cap K_{2}$ and $K_{1} \cap K_{2}$ corresponds to a Type-II vertex. Hence, $K_{1} \cap K_{2}$ must be adjacent to one of K_{1} and K_{2}. However, $K_{1} \cap K_{2} \subseteq K_{1}, K_{2}$, this is a contradiction. Thus we must have $p=q$ and $|G|=p^{b+1}$. Hence Claim 2 holds. As G is a group of primepower order, G is nilpotent and $\Gamma^{*}(G)$ has a unique universal vertex. Thus by Theorem 3.6 in [23], G must belong to one of the five families of groups, namely $3,4,5,6,7$. As $\Gamma^{*}\left(\mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p}\right)$ and $\Gamma^{*}\left(M_{p^{n}}\right)$ has p many universal
vertices, G is not isomorphic to $\mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p}$ or $M_{p^{n}}$. Again, as $\Gamma^{*}\left(S D_{2^{n}}\right)$ a unique vertex of second highest degree, G is not isomorphic to $S D_{2^{n}}$. If $G \cong Q_{2^{n}}$, then number of isolated vertices in $\Gamma(G)$ is $n-2$ and the second highest degree is 2^{n-2}. However, $\Gamma\left(D_{2^{\alpha}}\right)$ has $\alpha-1$ isolated vertices and its second highest degree is 2^{α}. This is a contradiction and hence $G \not \not Q_{2^{n}}$. Hence $G \cong D_{2^{n-1}}$. Finally, comparing the number of isolated vertices, we get $G \cong D_{2^{\alpha}}$.

3.3 Conclusion and Open Issues

In this chapter, we discussed various properties related to comaximal subgroup graph of \mathbb{Z}_{n} and D_{n}. However, some of the isomorphism problems are yet to be answered and can be interesting topics of further research.

- If G is a finite group such that $\Gamma(G) \cong \Gamma\left(\mathbb{Z}_{n}\right)$, what can we say about G ?
- For the same question pertaining to D_{n}, a partial answer is provided in Theorem 3.2.11. Although the general case is still open.

