Chapter 3

Co-Maximal Subgroup Graph of Z,,
and D,

In this chapter, we study various properties of co-maximal subgroup graph

of Z, and D,,.

3.1 Co-Maximal Subgroup Graph of 7,

We start with some basic properties of I'(Z,,) and I'*(Z,). As for any cyclic
p-group G, I'(Z,,) is empty, throughout the paper, we consider I'(Z,) where
n is not a prime power.

3.1.1 Basic Properties of I'(Z,,)

In this section, we study some basic properties of I'(Z,) and I'*(Z,) like

connectedness, degree, diameter etc.

o4



Lemma 3.1.1 Let H = (x) and K = (y) be two subgroups of Z,, where x,y
divide n. Then H ~ K in I'(Z,) if and only if ged(z,y) = 1.

Proof : It follows from Bezout’s theorem and the observation that HK =

{sz+ty:s,tel} O

Theorem 3.1.1 Let n = p1®po®2-- - pp“*, where p;’s are distinct primes
and o; > 1. Let H = (p1P1po - - pi%) be a subgroup of Z,, where 3; < a;.
Then degree of H in I'(Z,) is

(

07 Zf B’L # 07V7:7
deg(H) = <
H (a; +1) =1, otherwise.
\ j:ﬂjzo
Proof : Follows from Lemma 3.1.1. L]

Corollary 3.1.2 Let n = p1™pe®2---pp*, where p;’s are distinct primes

and o; > 1. Then I'"(Z,,) is Eulerian if and only if n is a perfect square.

Proof : If n is a perfect square, then each «; is even and by Theorem
3.1.1, degree of every vertex of ['*(Z,,) is even and hence I'*(Z,,) is Eulerian.
If n is not a perfect square, then there exists ¢ such that «; is odd. Let
H = (p1™ - pi 1% 'pi1 @t - pp®). Then by Theorem 3.1.1, deg(H) =
a;, which is odd. Thus I'*(Z,,) is not Eulerian. O

Theorem 3.1.2 Let n = p1“'ps®2 - - - pp™*, where p;’s are distinct primes

and o; > 1. Then I'(Z,) has exactly aqag - - - a — 1 isolated vertices.
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Proof : Since GG is a cyclic non p-group of order n = p;®ps®2 - - pp“*.

Then, G = Z,. By Lemma 3.1.1, H = (p1ps - - - pr) is an isolated vertex in
['(G). Similarly, if = is a multiple of pyps - - - pr which divides n, then (z) is
an isolated vertex in I['(G).

Let A = (a) with a|n be a subgroup of G such that A is an isolated
vertex in I'(G). As G has a unique subgroup of order corresponding to each
factor of n and for any non-trivial proper subgroup H of G, we have A X H
in ['(G), we have ged(a, m) # 1 for any factor m of |G| = n. Thus p;|a for
all 4, i.e., a is a multiple of p1py - - - pr which divides n.

Hence the number of isolated vertices in I'(G) is ajag - - - a — 1. O
Corollary 3.1.3 ['(Z,,) is connected if and only if n is square-free.

Proof : Let n = p1®py*2 - - pp“. The corollary follows from the fact that
ajas - --ap — 1 =0 if and only if n is square-free. ]

Theorem 3.1.3 Let G be a cyclic non p-group of ordern = p1“ py*2 - - - pp.**,
where p;’s are distinct primes and o; > 1. Then diam(I™*(G)) = L k=2
3, ifk>3
Proof : It is clear that the number of maximal subgroups of G is k. If k£ = 2,
then the vertices of T'*(G) are (p1), (p12),..., (;1™), (p2), (P22), ..., (P2
and any two non-adjacent vertices always have a common neighbour either
(p1) or (ps). Hence its diameter is 2.
If £ > 3, then (p1ps---pr_1) and (pops3---pi) are non-adjacent vertices

in ['*(G) and they do not have any common neighbour. Thus their distance

is greater than 2. Now, as Z,, is nilpotent, we have diam(I'*(G)) =3. O
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Theorem 3.1.4 Let G be a cyclic non p-group of ordern = p1“pa*2 - - - pp.“*,
where p;’s are distinct primes and o; > 1. Then T'(G) has pendant vertices

if and only if a; = 1 for some 1.

Proof : Let G be a cyclic group of order n = p1“py*2 - - - pp.**, where at
least one a; = 1, say oy = 1, i.e., n. = p1pa®? -+ - pp™. Then (pops- - - pi) is a
pendant vertex in I'(G), which is adjacent to (p;).

Conversely, let G be a cyclic group of order n = p;*py*2 - - - pp“ such
that I'(G) has at least one pendant vertex. If possible, let o; > 2 for all 1.
Let H = (m) be a pendant vertex in I'(G) where m|n. If p;|m for all 7, then
H is an isolated vertex, a contradiction. Thus, m misses at least one prime
factor. Let m = po™ - - - pi% where 0 < 8; < ;. But this implies that H is
adjacent to the vertices (p1), (pi?), ..., (p1™). As a; > 2, H can not be a

pendant vertex. Thus, at least some a; must be 1. [l

3.1.2 Hamiltonicity, Perfectness and Dominating Sets of ['(Z,)

In this section, we characterize the values of n for which I'*(Z,) is perfect

and hamiltonian. We also find the domination number of I'*(Z,,).

Theorem 3.1.5 Let n = pi1™“'p®? - - pr®, where p;’s are distinct primes

and o; > 1. Then T'"(Z,,) is Hamiltonian if and only if k =2 and a; = as.

Proof : If £ = 2 and a; = ao, then n = p;*py*. We now explicitly

construct the hamiltonian circuit in I'*(7Z,,):
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(p1) ~ (p2) ~ () ~ (3) ~ (1) ~ (p3) ~ -+ ~ (PI*) ~ (p3") ~ (p1).

Conversely, let I'*(Z,) be Hamiltonian. If possible, let £ > 3. If a; = 1
for some ¢, then the graph has a vertex of degree 1 and hence it is not
hamiltonian. Thus, we assume that a; > 2 for all i. Without loss of
generality, let a; = min{ay, a9,...,axr}. Now, the vertices of the form
(p2°2p3®s - - - %) are adjacent only to the vertices of the form (p;°1), where
1 <o) <y ie., we have agasg - - - ay, vertices of degree ay. As two vertices
of the form (p20‘/2p30‘5 e p;ﬂe) are not adjacent, to complete a hamiltonian
cycle, we need at least asasg - - - ay different vertices between the vertices of
the form (pa®2ps®s - .- pp®). But, as k > 3, we have asas - -- oy, > . This
leads to a contradiction. Thus k£ = 2 and n = p;*“py*2.

As earlier, we can assume that ay,as > 2. Let, if possible, a; # ao.
Without loss of generality, let 2 < a; < as. Now, on any hamiltonian
circuit in T'*(Z,,), between any two vertices of the form {p;") and (p;?) we
have a vertex of the form (py') and between any two vertices of the form
(po') and (ps’) we have a vertex of the form (p;!). Thus any Hamiltonian
circuit should consist of an alternating run of vertices of the form (p;*) and
(po’). However, as a; < ay, we have more vertices of the form (py’) than

that of the form (p;%), a contradiction. Thus a1 = ax. O

Theorem 3.1.6 Let n = p1“'ps®2-- - pp™*, where p;’s are distinct primes
and o; > 1. Then I'(Z,,) is perfect if and only if k < 4.
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Proof : If k > 5, then there exists an induced 5-cycle in I'*(Z,,) as shown
in Figure 3.1.2. Thus, in this case, I'*(Z,) is not perfect. Let k < 4,
i.e., n has at most 4 distinct prime factors pi,pso, p3,ps. Let, if possi-
ble, I'*(Z,) admits an induced odd cycle of length ¢ > 5, say (hi) ~
(hg) ~ -+ ~ (hy) ~ (hy). From the non-adjacency relations, we get
gcd(hy, hg), ged(hy, hy), ged(he, hy), ged(ha, hs), ged(hs, hy) # 1.

Let py | gcd(hy, hs). Then py | hy and p;y | hs. Again, as (h;) ~ (hy), we
have ged(hy, hy) = 1, i.e., p1 1 hy.

Similarly, as (h3) ~ (hy), we have p; 1 hy, ie., p1 1 gcd(hy, hy). Let
po | ged(hy, hy). Then ps | by and po | hy. Now as (h3) ~ (hg), we have
pa2 1 hs.

Again, as p1,pe | hy and (hy) ~ (hs), we have py,ps 1 ho, i.e., p1,p2 1
gcd(hg, hy). Let p3 | ged(he, hy). Then p3 | hy and p3 | hy. As (ho) ~ (h3),
we have p3 1 hs.

Thus py, pa, p3 1 ged(hs, hy). Let py | ged(hs, hy). Then py | hs and py | hy.
As (hg) ~ (hs3), we have py 1 he. Again, as (hy) ~ (hs), we have p3 t hs.

From the above situation, we get pi,p2,ps,ps 1 ged(he, hs). This is a
contradiction, as gcd(hg, hs) # 1 and k < 4. Thus ['*(Z,,) does not admit
any induced odd cycle of length ¢t > 5.

Let, if possible, ['*(Z,,)¢ admits an induced odd cycle of length ¢ > 5, say
(h1) ~ (ha) ~ -+ ~ (hy) ~ (h1). Note that in the complement graph, two
vertices (h;) and (h;) are non-adjacent/adjacent according as ged(h;, h;) is

equal /not equal to 1 respectively.
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As (hy) ~ (hs), we have gcd(hy,ho) # 1. Let p1 | ged(hy, hy). Then
p1 | hi and py | he. As ged(hi,hg) = 1, we have p; 1 hg, ie., p; 1
gcd(hg, hg). Similarly, we can conclude that p; does not divide any one
of ged(hg, hy), gcd(hy, hs), ged(hy, hy).

Let po | ged(ha, hs). Then po | he and py | hs. As ged(ho, hy) = 1, we
have py { hy, i.e., py does not divide ged(hs, hy) and ged(hy, hs). Similarly,
as gcd(hg, hy) = 1, we have po 1 hy, i.e., pa 1 ged(hq, hy).

As p1,p2 1 ged(hs, ha), let ps | ged(hs, ha). Then ps | hs and ps | ha.
As ged(hy,h3) = 1, we have ps 1 hy, ie., p3 t gced(hy, hy). Similarly, as
gcd(hs, hy) = 1, we have p3 1 hs, i.e., p3 1 gcd(hy, hs).

As p1,p2,p3 1 ged(ha, hs), let py | ged(ha, hs). Then py | hy and py | hs.
As ged(hy, hy) = 1, we have py 1 hy, i.e., pyt ged(hy, hy).

Thus p1, pa, p3, pa 1 ged(hq, hy). But this is a contradiction, as ged(hq, hy) >
1 and n has at most four distinct prime factors. Thus I'*(Z,,)¢ does not ad-
mit an induced odd cycle of length ¢ > 5.

Hence, by strong perfect graph theorem, the theorem follows. [l

([p1p2])

([paps]) [p3p4])

([pop3l) ([p1psl)

Figure 3.1: Induced 5-cycle in I'*(Z,,), for k > 5

Theorem 3.1.7 Let n = p1™“'py®2 - - - pp™, where p;’s are distinct primes,
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k>2 and o; > 1. Then

L, ifn=p“ps.

k, otherwise.

Proof : Clearly {(p1), (p2), ..., (pr)} is a dominating set for I'*(Z,) of size
k. Thus v(I'"(Z,)) < k.

Let S = {(x1), (z2), ..., (xr_1)} be a dominating set of ['*(Z,,) of size k —
1. Let m = p1paps - - - pi. Out of the k vertices (m/p1), (m/ps), ..., {(m/py),
at least one does not belong to S. Without loss of generality, let (m/p;) ¢ S
and (m/p1) ~ (x1). Thus, by Lemma 3.1.1, z; = pf/l, where 1 < o] < ag.
Thus (x1) is not adjacent to any of the k—1 vertices (m/p2), (m/p3), ..., (m/pg).
Again, by similar argument, not all of these k — 1 vertices belong to S.
Without loss of generality, let (m/p2) ¢ S and (m/ps) ~ (x2). Proceeding
similarly, we get xo = pgé, where 1 < o < ao. Thus (x;) and (xs) are not
adjacent to any of the k — 2 vertices (m/p3), ..., (m/p;). Continuing in this
way, we get x; = p?; fori =1,2,...,k — 1. However, in that case, (m/py)
neither belong to S nor adjacent to any element of S, a contradiction. Hence
V(I*(Zy)) = k.

Note that the proof does not work if £ = 2 and exactly one of the two
powers is 1. Because in that case, one of (m/p1) and (m/ps) is not a vertex
of I'*(Z,), i.e., an isolated vertex of I'(Z,). If k = 2 and n = p;*'p,, then
(p2) dominates I'*(Z,,). O
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3.1.3 Isomorphisms

In this section, we discuss the conditions under which co-maximal subgroup
graphs defined over different cyclic groups are isomorphic. For that, we

start with the following definition.

Definition 3.1.1 Two positive integers n and m are said to be of same
prime-factorization type if n = p1®p®2 - P and m = Mg - g
where p;, q;’s are primes and there exists o € Sy such that a; = B, for

i=1,2,...k

Theorem 3.1.8 Let n and m be two integers. Then U'(Zy,) = U(Zy,) if and

only if m and n are of same prime-factorization type.

Proof : If m and n are of same prime-factorization type, then the result is
obvious. Let I'(Z,,) = I'(Z,,), then as their clique numbers are equal, both m
and n have same number of distinct prime factors. Let n = p;®py®2 - - - p. %
and m = ¢M1g” - - ¢,”. Also as they have same number of isolated ver-
tices, we have o - ag - = B1 - Bo - -+ Bi.

Without loss of generality, let a1 = min{ay, as, ..., ok, B1, B2, .-, Bk}
If possible, let oy & {B1, B2, - - ., Br}. Now, note that any vertex of the form
(p2%2ps®s - ™) (1 < o} < o) in T'(Z,) is adjacent to only ay vertices,
namely (p1), (p?), ..., (p}*). Thus ['(Z,) has asas- - ay vertices of degree
ar. As ag < min{py, Ba, ..., 0} and a1 & {51, Po, ..., Bk}, from Theorem

3.1.1, it follows that I'(Z,,) has no vertex of degree oy, a contradiction.

Thus oy = §; for some 7. By suitable renaming, let a; = (.
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Again, without loss of generality, let ao = min{as, ..., ag, B2, ..., Bk}
If possible, let as & {5, ..., 0k} If as # [y, then by similar argument,
['(Z,) has no vertex of degree aw, a contradiction. Thus, we assume that
ag = a1 = ag. Then I'(Z,) has asag - -+ ay + ajas - - - ap of degree ap and

[(Z,) has Bof5 - - - By, of degree ay. As I'(Z,,) = I'(Zy,), we have

Qs + aag -y = Pofs - B,

al.a2...ak

A1

(as aq - g+ = B+ Bo- - Br)

ie., ag--ap(ag +az) =

ie., Bi(al + ag) = ajas,ie., 207 = af,a contradiction.

Thus as = f; for some i € {2,3,...,k}. By suitable renaming, let ay = [3s.

Proceeding this way, suppose in the (I —1)-th step, we get a; = 3; for i =
1,2,...,l—1. Without loss of generality, let oy = min{oy,...,ax, 5, ..., Br}-
If possible, let oy & {6;,..., Bk} f a; & {B1, B2, ..., Bi—1}, then by similar
argument, ['(Z,,) has no vertex of degree ¢y, a contradiction. Thus, we
assume that oy € {f1,02,...,0-1}. Let oy = B, = Bp1 = -+ = fi-1 =
ap =0y =~ =qap 1 forsome 1 <p<Ii—-1

Therefore, I'(Z,,) has

(a1a2 e OéprCYerl e @k)+(@1 e Qpap+1 . e ak)+ . +(Q1 e Ozl*lalJrl . e ak)

1 1 1 .
=aqy-rop | —+ + .-+ 4+ — | vertices of degree «.
Qap  Aptq Qaq
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Similarly, I'(Z,,) has

1 1
— 4+ 44—
Bp ﬁp—l—l ﬁl—l

—

) vertices of degree q.

Now, as I'(Z,,) = I'(Z,,), we have

Ql"'@k(i‘i‘ 1 _|_..._}_l) :Bl"‘/Bk(i‘f‘L‘i‘""i‘L)
Bi-1

Qp  Qpiq Qg /Bp Berl

: 1 1 1 1 1 1 l—p+1
l.e.’ I —|— —|— R —|— e — = _— —|— —|— P _|_ _ :>
Qp  Qptl o Qp  Opt] Q-1 o

a contradiction. Thus, by suitable renaming, we get o; = 3;, and hence by

induction, the theorem follows. [l

3.2 Co-Maximal Subgroup Graph of D,

In this section, we study the comaximal subgroup graph on finite dihedral

groups, denoted by I'(D,,).

3.2.1 Structural Properties of I'(D,,) and I'*(D,,)

We characterize various structural properties of I'(D,,) and I'*(D,,) of like
order, maximum and minimum degree, girth, diameter and when they are
Eulerian. We start by describing the complete list of subgroups of D,,, which
constitute the vertex set of the graph to be studied.

The dihedral group D,, has two generators r and s with orders n and 2

such that srs™' =77t D, = (r,s : v = s> = 1, srs = r"~1) consists of 2n
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elements. We recall a result on the complete list of subgroups of D,,. For a

proof of this listing, please refer to [22].

Proposition 3.2.1 FEvery subgroup of D, is either cyclic or dihedral. A

complete listing of the subgroups is as follows:

1. (r?), where d|n, with index 2d,

2. (r®,r's), where djn and 0 < i < d — 1, with index d.
Moreover, every subgroup of D,, occurs exactly once in this listing.

Proposition 3.2.2 I'(D,,) has o(n) + 7(n) — 2 vertices.

Proof : I'(D,) contains all subgroups of the form (r?), where d|n and
d # n. We call this vertices of Type-I, and so number of Type-I vertices
is 7(n) — 1. Similarly, ['(D,) contains all subgroups of the form (r? ris),
where d|n and 0 <i < d — 1 except d = 1. We call this vertices of Type-II,
and so number of Type-II vertices is o(n) — 1. O

Now, we investigate the adjacency between vertices of I'(D,,). It is clear
that no two vertices of Type-I are adjacent. Thus, any edge of I'(D,,) occurs

either between two vertices of Type-II or one of Type-I and one of Type-II.

The edges in I'(D,,) are completely classified in the next theorem.

Theorem 3.2.1 The following are the edges of I'(D,,):

o A wvertex (r®t) of Type-I is adjacent to a vertex (r® ris) of Type-II if
and only if ged(dy, ds) = 1.
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o Two vertices (r’ ris) and (r® ris) of Type-1I are adjacent if and only

if one of the two conditions hold:
1. gcd(dy, dy) = 1.
2. ged(dy,ds) =2 and i — 7 is odd.
Proof :

e Let H = (r®t) and K = (r®, r’s). We start by noting that HK = D,,
if and only if r € HK. If ged(dy, dy) = 1, then there exist integers u, v
such that ud; + vdy = 1. Thus, r = (r®)* - (r%)" € HK. Conversely,

asr ¢ H, K, but r € HK, we must get 7 as product of powers of r%
and 7% i.e., ged(dy, dy) = 1.

o Let H = (rf ris), K = (r®2 ris) and H ~ K. Then HK = D,,. If
d = ged(dy, ds), then there exist integers x,y such that dyx + dyy = d,
ie, rl = (r&)*(r2)¥ ¢ HK = D,. Thus (r?) C HK. Note that 74
is the smallest power of r that can expressed as product of powers of
r® and r?%. If d > 3, then r and 72 must be expressible as products of

powers of 7% ris r?% and ris, i.e., there exist integers 1, =2, Y1, Yo such

that
dir1+doxa+(i—7) =1 (modn) and dyy, +doys+ (i —j) = 2 (mod n).

Subtracting, we get dyu+dov = 1 (mod n), i.e., d divides dyu+dov — 1,
i.e., d|1, a contradiction. Thus d = 1 or 2. If d = 1, we are done.

Suppose d = 2 and
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1 —j is even. Note that d = 2 implies n is even. Now, as r € H K, there
exist integers x and y such that diz + dsy + (i — j) = 1 (mod n). But,
dyx + doy + (i — j) is even and it can not be congruent to 1 modulo an

even number n. Thus ¢ — 57 must be odd.

Conversely, let one of the conditions hold. If d = 1, then any integer
can be expressed as integer linear combination of dy and dy. Thus for
any integer [, we have rl,rls € HK, ie., HK = D,. If d = 2 and
i — j is odd, then n is even. As d = 2, r?> and all even powers of r can
expressed as product of powers of 7% and 7% and they belong to HK.

For odd powers of r to be in H K, we must have integers x, y such that
phatday t=0) — 2050 5o dia + doy + (i — ) = 2t 4+ 1 (mod n)

2u=2t+1+ 75— 1 (mod n)

Note that as gcd(dy, ds) = d = 2, for any integer u, we can find = and
y such that dix + doy = 2u. Also, 2t +1+ j — 7 is even. Thus, we have

2145
N 2

(mod n)

u

Hence for all values of ¢, u has a solution and all odd powers of r lies

in HK , i.e., (r) C HK.

Again, note that r&@tdytig pdiztdytis ¢ K for all values of z,y,

ie., r2tis r?tis ¢ HK for all value of . As i — j is odd, ¢ and j has

different parity, and hence by varying [ suitably, all the elements of the
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form r*s € HK. Thus HK = D,,, i.e., H ~ K.

O]
In the next few theorems, we find the maximum and minimum degree of

['(D,,), and its number of isolated and pendant vertices.

Theorem 3.2.2 The maximum degree of I'(D,,) is o(n) — 1 and is attained
by (r).

Proof : Among Type-I vertices, (r) has the maximum degree and its degree
is
Y d|-1=0(n)-1
dln,d#1

We claim that the degree of any Type-II vertex is less than o(n) — 1.

Case 1: (n is odd, say n = pi'p5*---p.*, where p;’s are odd primes).
Let H = {r?,r's) be a Type-II vertex with d|n,d # 1. Without loss of
generality, let p; be a prime divisor of d. Set K = (r?, s) and L = (r1,s).
Clearly K C L. As n is odd, d is also odd. Thus we have

set of neighbours of H = set of neighbours of K C set of neighbours of L.
Thus deg(H) = deg(K) < deg(L). Consider the following two set of vertices
A= {{r" s) :pi|di,dy|n} and B = {{r®) : p; 1 dy}.

It is easy to check that all vertices in A are non-adjacent with L and B is

the exactly the set of vertices of Type-I which are adjacent to L. Note that
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Al = an(ag+1)---(ap + 1) and |B| = (ag + 1) -+ (o + 1). As there are

total (o(n) — 1) many Type-II vertices and |A| > |B|, we have
deg(H) < deg(L) < (o(n) —2)—|A|+ |B| <o(n)—2<o(n) — 1.

Case 2: (n is even, say n = p{'py®---p.*, where p; = 2 and other p;’s
are odd primes). Let H = (r? r's) be a Type-II vertex with d|n,d # 1 and
p;j be a prime divisor of n. According as 7 is even or odd, set K = (r?, s) or
(r?, rs) respectively, and L = (rPi,s) or (r?, rs), respectively. As in Case
1, we have deg(H) = deg(K) < deg(L). Again, as in Case 1, construct the
sets A and B. The rest follows similarly and deg(H) < o(n) — 1. Thus the

theorem follows. O

Theorem 3.2.3 Let n = pi"p5? - - pp*. The number of isolated vertices in
[(D,,) is aqag -+ - ag, — 1. Moreover, I'(D,,) is connected if and only if n is

square-free.

Proof : Note that Type-II vertices are never isolated as they are always
adjacent to (r). A Type-I vertex (r?) is isolated if and only if p|d, for all
primes p|n, ie., if n = p{"py?---p*, then the number of isolated vertices
are ayQv - - - o — 1.

As D, is solvable, it is connected if and only if it has no isolated vertex

if and only if ayas---ap — 1 =0 if and only if n is square-free. 0
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Theorem 3.2.4 The minimum degree of I'*(D,,) is given by

. 1, ifn is odd,
o(I'"(Dy)) =

2, if n s even.
Proof : If n is odd, then (s) is adjacent only to (r), and hence § = 1. If n
is even, then (s) is adjacent only to (r) and (r? rs). Thus degree of (s) is
2. We need to show that no vertex have degree 1. Note that every Type-II
vertex is adjacent to (r) and exactly one of (r?,s) and (r? rs), i.e., degree
of a Type-II vertex is > 2. Let (r?) be a non-isolated Type-I vertex. Then
d misses atleast one prime factor of n, say p. Then (r?) is adjacent to (r?, s)

and (P rs), i.e., its degree is > 2. O

Corollary 3.2.3 Let n = pi'py*---pp* be odd. The number of pendant

vertices in I'(D,,) is

plm...pkﬁw
-1 (i —1)

Proof : If n is even, by Theorem 3.2.4, the minimum degree is 2 and hence
['(D,,) has no pendant vertex. So, we assume that n is odd.

We start by observing that Type-I vertices of the form (r?) are never
pendant, as if (rd) ~ (r* ris), then (r?) ~ (r* ris) for j # i. Thus Type-II
vertices are the only possible choices for pendant vertices.

Let (r?,rs) be a pendant vertex. If p; { d for some 4, then (r¢, r's) is

adjacent to at least two vertices, namely (r) and (rP?). Thus p;|d for all i.

Finally, if p;|d for all i, then it is easy to observe that (r¢, %s) is adjacent
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only to (r). Now, the corollary follows by counting the number of such

vertices. L]

Proposition 3.2.4 The girth of I'(D,,) is 3 for n > 3 and n is not an odd

pPrime power.

Proof : If n is even, then (r), (r?, s) and (r? rs) forms a triangle. If n is
odd, but not a prime power, then there exist two distinct prime factors, say

p,q of n. Then (r), (r? s) and (r? s) forms a triangle. O
Proposition 3.2.5 I'"(D,,) is a star if and only if n is an odd prime power.

Proof : Let n = p* where p is an odd prime. Then all Type-I vertices
except (r) are isolated in I'(D,,) and (r) is an universal vertex in I'*(D,).
Now, as any Type-II vertex is of the form (r?,rs), no two of them are
adjacent and hence I'*(D,,) is a star.

Conversely, if I'*(D,,) is a star and n is not an odd prime power, by above
Proposition, I'(D,,) has a triangle, a contradiction. O

As D, is a finite solvable group, by Theorem 2.2.4, I'*(D,,) is connected
and its diameter is less than or equal to 4. In the next theorem, we compute

the diameter of I'*(D,,) and show that it is either 2 or 3.

Theorem 3.2.5

2, n=p
Diam(I™(D,,)) =
3, else
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Proof : If n is an odd prime power, by Proposition 3.2.5, I'*(D,,) is a star
and hence Diam (I'*(D,,)) = 2. If n = 2%, then by Theorem 3.6 [23], I'*(D,,)
has an universal vertex and hence Diam(I'™*(D,,)) = 2.

If n is not a prime power, then n has at least two distinct prime factors.
Let n = p®¢®m, where m is coprime to p and ¢. Then consider the vertices
A = (") and B = (r"/?"). Clearly they are non-adjacent. As both are
Type-I vertices, if they have a common neighbour, it must be a Type-II
vertex, say (r¢,r's). But that means d|n,d # 1 and d is coprime to both p*
and n/p®, a contradiction. Thus A and B have no common neighbour, i.e.,
d(A, B) > 2. Consider the path (r?*) ~ (1%, s) ~ (rP s) ~ (r"P") and hence
d(A, B) = 3.

We claim that any two vertices are atmost at distance 3 from the other. If
both the vertices are of Type-II, then they always have a common neighbour
(r) and hence their distance is atmost 2. If both are of Type-I and are not
isolated, say (r™t) and (r%), then both d; and do miss at least one prime
factor of n, say p and ¢q. If p # ¢, then (r&t) ~ (r? s) ~ (r4 s) ~ (ré),
i.e., their distance is atmost 3. If p = ¢, then (r®&t) ~ (r?,s) ~ (r®), i..,
their distance is at most 2. Thus we are left with the case where one of
the vertex is of Type-I and other is of Type-II, say (r®) and (r®, rs). As
(r®1) is not isolated, d; misses at least one prime factor of n, say p. Thus
(rfy ~ (rP,s) ~ (r) ~ (rf ris), ie., their distance is at most 3. Hence the
theorem follows. ]

In the next theorem, we check when I'*(D,,) is Eulerian.
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Theorem 3.2.6 I'*(D,,) is Fulerian if and only if n is even and all odd

prime factors of n are of even exponent.

Proof : Let I'*(D,,) be Eulerian. If n is odd, by Theorem 3.2.4, minimum
degree is 1, i.e., odd, a contradiction. So n must be even. Let n has an odd
prime factor p of odd exponent a, i.e., n = p®m, where m is even and p { m.
Consider the vertex (r"). Observe that its only neighbours are of the form
(rP",ris). Thus degree of (r™)is p+p?+---+p%, i.e., odd, a contradiction.
Hence all odd prime factors of n are of even exponent.

Conversely, let n be even and all odd prime factors of n are of even
exponent. Let n = 2% “1ps®2 - - - pi.** where «;’s are even. We will show
that all non-isolated vertices have even degree.

Let us first consider the Type-I vertices of the form (r?). If d is divisible
by all the prime factors of n, then (r?) is an isolated vertex. So, we assume
that d is not divisible by some prime factors of n. Suppose p;,, Di,, - - -, i,
are the prime factors of n not dividing d. Then the neighbours of (r?) are
of the form (rPi”Pi" 2™ 1ig) where not all ;s are zero simultaneously.
Thus degree of (r?) is o(p; “1p;,%2 -+ p;, %) — 1, which is even, as each «;
is even. Thus Type-I vertices are of even degree.

Now, we consider the Type-II vertices of the form (r¢, ris). If d is divisible

4 ris) has precisely two neighbours, (r)

by all the prime factors of n, then (r
and exactly one of (r?, s) and (r? rs). So, we assume that d is not divisible
by some prime factors of n. Suppose p;,, pi,, - - ., p;, are the prime factors of

n not dividing d.
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Case 1: (21 d) In this case, the neighbours of (r¢,r's) are of the form
(rpi " Pi™ 0™ and (ppa P ™ pig) where not all B;’s are zero. Thus

the degree of (r?,r's) is
T(pilailpizalé .. .pitait) + U(pilailngazé .. 'pitait) — 2’

which is even, as explained earlier.

Case 2: (2|d) In this case, apart from the neighbours mentioned in Case
1, (r,ris) has neighbours of the form (r2a"pi™ ™ 1ig) where i — j
is odd. However, proceeding similarly as above, it can be shown that the
number of such neighbours is also even. As a result the degree of Type-II

vertices are also even. This proves the theorem. [l

3.2.2 Domination number, Chromatic Number and Perfectness

of I'(D,)

In this section, we study the domination number, chromatic number of

I'(D,,) and characterize when I'(D,,) is perfect.

Theorem 3.2.7 The domination number of I'*(D,,) is given by

. 1, if nis a prime power,
V(I (Dy)) = |
m(n) 4+ 1, otherwise.

Proof : If n is a prime power, by Proposition 3.2.5, I*(D,,) is a star and

hence the theorem follows. Let n = pi"p5* - - - pi*. Clearly {(r), (r,s), (rf?,s), ...

is a dominating set of I'*(D,,) and hence v(I'*(D,,)) < k + 1.
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If possible, let S = {1, s, ..., x;} be a dominating set of size k. Set m =
p1p2 - - - pr, and consider the set of k41 vertices A = {(r™/P1), (p™/P2)  (pTIPE) (pm )
Among these k£ + 1 vertices, at least one of them is not in S. With-
out loss of generality, let (r™/P1) ¢ S and (r™/P1) ~ z;. Then x; is of
the form (rpfl,rils>. Note that z; is not adjacent to any one of k ver-
tices in the set A’ = {(r™/P2) . (™) (r™ s)}. By similar argument,
not all of these k vertices in A’ belong to S. Without loss of gener-
ality, let (r™/P2) ¢ S and (r™/P) ~ z,. Proceeding similarly, we get
Ty = <Tp§2,7“i25>, T = (rpfk, riks).

If n is odd, then (r™,s) is not adjacent to any x;, a contradiction. If
n is even, then either (r™,s) or (r" rs) is not dominated by any xz;, a

contradiction. Hence, v(I'*(D,,)) = k + 1. O

Theorem 3.2.8 I'(D,,) is weakly perfect, i.e., the clique number and chro-
matic number of I'(D,,) are given by
m(n)+1, ifn is odd

m(n)+2, ifn is even.

aq, Q2

Proof : We first deal with the case when n is odd, say n = pi'p5*---p.*,
where p;’s are distinct odd primes. Consider the set A = {(r), (rP*,s), (rP2,s), ..., (rP*,
Clearly A forms a clique of size k+1 = 7(n)+1, i.e., w(I'(D,,)) > w(n) + 1.
Let M be a maximum clique of I'(D,,) of size t > k + 2. If M contains
only vertices of Type-II, then M U (r) is a clique properly containing M,

a contradiction. Thus M always contains a vertex of Type-I. As no two
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vertices of Type-I are adjacent, M can have exactly one vertex of Type-I.
Without loss of generality, we can assume the Type-I vertex in M to be (r).
Let M = {{r), (r®s,rPs), (roz,rb2s) ... (ro-1 rb-1g)}. Thus ay,as,a; 1 are
mutually coprime factors of n and a; # 1. But as n has 7(n) distinct prime
factors, it can have atmost 7(n) = k < t—1 mutually coprime factors. Thus
w(l(Dy,)) =m(n) + 1.

Similarly, if n is even, i.e., n = 2%py>-.-p*, it can be easily checked
that B = {(r), (r?,s), (r?,rs), (rP2,s),..., (rP* s)} is a clique of size k+2 =
w(n) + 2. Thus w(I'(D,)) > m(n) + 2. Let M be a maximum clique of
['(D,,) of size t. As in the previous case, M have exactly one vertex of
Type-1. Let M = {{r), (r® r¥s), (ro2 rb2s) . . (r@-1 rb-15)} Arguing as
in the previous case, the number of odd divisors of n among ay, as, a;_1 is
atmost k£ — 1. Again due to the adjacency condition of Type-II vertices, the
number of odd divisors of n among ai,as,a;_1 is atmost 2. Thus M can
have atmost 1 + 2+ (k — 1) = k + 2 vertices, i.e., w(I'(D,)) = w(n) + 2.

As x > w, it suffices to produce a proper colouring using w colours. If

n = pi'py? - ppt is odd, define

Av={(r"), ¢ r's) spild}, As = {(r"), (r,r's) s pald} \ Av, -

j—1

4= {(rh, (r,r's) :pjld}\ UAZ, where j =1,2,... k.
=1

Observe that Ay, As, ..., A; are independent sets in I'(D,,). We assign the

colour j to all the vertices in A; and the k + 1 the colour to (r). It can be
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easily checked that this is a proper colouring of I'(D,,) using k+1 = 7(n)+1
colours.

Similarly, if n is even, we construct similar independent sets for each
prime as above, with the following exception for the prime 2. For the
prime 2, we construct two sets X = {(r?), (r?,rs) : 2|d,i is odd} and Y =
{{r?), (r? ris) : 2|d,i is even}. One can easily check that this gives a proper

colouring I'(D,,) using m(n) + 2 colours. O

Theorem 3.2.9 I'(D,,) is perfect if and only if one of the two conditions
hold:

e n is odd and w(n) < 4.

e n is even and either m(n) <2 or w(n) =3 and 41 n.

Proof : If nisodd and w(n) > 5, let n = pi'py? - - - ps>m, where p;’s are odd
primes which are coprime to m. Then (rP2 s) ~ (rPsP s) ~ (rP2Ps g) ~
(rPPa ) ~ (rPsPs s) ~ (rPP2 sy is an induced 5-cycle in I'(D,,) and hence
['(D,,) is not perfect.

Let n be odd and w(n) < 4. Let C : &y ~ @9 ~ -+ ~ To;yq ~ 7 be
an induced odd cycle in I'(D,). As n is odd and any subgroup of D, is
of the form (r?) or (r? ris), it follows from the adjacency condition that
(rf)y ~ (rd2 ris) or (r®, ris) ~ (r? ris) if and only if ged(dy, dy) = 1. Thus
for each vertex z; in C' we can associate a factor d; of n such that x; ~ x;
if and only if ged(d;,d;) = 1. Now, by following the steps in the proof of
Theorem 3.2 in [39], one can show that I'(D,,) is perfect.
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If nis even and 7(n) > 4, let n = 2%p5%- - pi*m, where p;’s are odd
primes which are coprime to m. Then (rP2) ~ (r?20s pg) ~ (rPsP1) ~
(r?Pa r2s) ~ (r?Pz s) ~ (rP2) is an induced 5-cycle in the complement of
['(D,,) and hence I'(D,,) is not perfect.

If 7(n) = 3 and 4|n, let n = 2%p5*p3® where p;’s are odd primes. Then
(rPr) ~ (rh s) ~ (rP2) ~ (1?1 s) ~ (ri2 rs) ~ (rP1) is an induced 5-cycle

in the complement of I'(D,,) and hence I'(D,,) is not perfect.

Thus, if n is even, we are left with two cases, either n = 2%p5* or n =
2p5°p5®. These two cases are dealt with in the following two lemmas. [

Lemma 3.2.6 If n = 2%py?, then I'(D,,) is perfect.

Proof : Note that any vertex of the form (r?) or (r? ris) where 2ps|d are of
degree 0 or 2 respectively in I'(D,,). In fact, (r? r's) is adjacent to exactly
two vertices, namely (r) and exactly one of (r?, s) and (r? rs). If possible,
let C': 21 ~x9~ -+~ x9,1 ~ 21 be an induced odd cycle of length atleast
5in I'(D,,). Clearly C' must have atleast one Type-1I vertex. As (r) does

4 ris) where 2ps|d does not lie on C.

not lie on C, any vertex of the form (r
Claim A: If 1 = (r®,r's) is a Type-II vertex on C, then d; is even.
Proof of Claim A: If dy is odd, then d; = pg. As 1 4 x3,14, We have

Fs). In any case, we have

x3 = (r?%) or (r ris) and x4 = (r#) or (1P, r
x3 % x4, a contradiction.

Claim B: There exists no Type-I vertex on C.
Proof of Claim B: If there exists two vertices, say x1,x; of Type-I on C.

Clearly they must be non-adjacent. Using Claim A, z; = (rpg> and x; =
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<rp§/>. But as x9, 29i11 ~ x1, we must have x; ~ 9, X941, a contradiction.
So atmost one Type-I vertex can be on C, say z7 = (7“1’5). As x1 o x3, 24
and both are Type-II vertices, by Claim A, we must have z3 = (r®, ris)
and x4 = (r®, rJs) where 2p, divides ds and dy. However such vertices do
not lie on C.

Thus all the vertices on C are of Type-II, ie., 2; = (r®, riis) for | =
1,2,...,2t + 1 where d;’s are even. Again from the adjacency condition,
we have all of 77 — 49,49 — 73,...,79:+1 — 71 to be odd. Adding all of them,
we get the sum of odd number of odd integers to be zero, a contradiction.
Thus I'(D,,) has no induced odd cycle of length atleast 5. Similarly, it can
be shown that I'(D,,)¢ has no induced odd cycle of length atleast 5. Hence
['(D,,) is perfect. O

Lemma 3.2.7 If n = 2%5?p5®, then I'(D,,) is perfect

Proof : If possible, let C': 1 ~ x9 ~ -+ ~ x9;11 ~ x1 be an induced odd
cycle of length atleast 5 in ['(D,,). As no two Type-I vertices are adjacent,
thus we must have atleast t + 1 > 3 Type-II vertices in C'.

Claim 1: (r?,r's), where 2pips|d does not lie in C.
Proof of Claim 1: Tts only neighbours are (r) and exactly one of (r?, s) and
(r?,rs). As (r) is adjacent to all Type-II vertices and there are atleast 3
Type-II vertices in C, {r) does not lie on C. Thus (r?, r’s) can have atmost
one neighbour in C'; which is a contradiction as C'is a cycle.

Claim 2: None of (r?,s) and (r? rs) lie in C.

Proof of Claim 2: If 1 = (r% s) lies in C, then as (r? s) is a maximal
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subgroup of index 2 in D,, all of x3,x4,...,z9 are contained in x;. Thus,
using Claim 1, without of loss of generality, we can assume that z3 =
<7“2pfl,ris> and x3 = (r2p§2,rjs>. As x3 ~ x4, we have i — j is odd. On the
other hand, as xy % w3, x4, we must have ¢ and j to be both even. This
contradicts the parity of ¢ — j.

Claim 3: Vertices of the form (rp?lp?} and <7“pf1p§2, r's) do not lie in C'.
Proof of Claim 3: As <rpf1p§2> is adjacent only with (r?, s) and (r? rs), the
claim follows from Claim 2. Similarly, only neighbours of <rpf1p§2,ris> in
['(D,) are (r), (r*) and exactly one of (r? s) and (r? rs). However, from
Claim 2, its only possible neighbour in C' is (r?), a contradiction. Hence
Claim 3 holds.

Claim 4: (r?) lies in C.

Proof of Claim 4: Suppose (r?) does not in C. Then from Claims 1,2 and 3,

it follows that for any vertex (r%) or (r

pfl, p252, 2pt or 2p5°. Again, as C' is cycle, d; must be alternately divisible

i ris) in C, d; must be of the form

by p1 and ps. But this contradicts that C' is an odd cycle. Thus the claim
follows.

Let 1 = (r?) be a vertex on C. As x; is a Type-I vertex, from the
adjacency condition and previous claims, without loss of generality, we have
2o = (17 1is) and woq = (rp?/, r/s). Then x3 must be of one of the 4 forms,
namely (772"}, (72" 77s), (r22°) and (r?2 ris). However, in any case, we
have x3 ~ 911, a contradiction. Thus I'(D,,) has no induced odd cycle of

length atleast 5. [l
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3.2.3 Isomorphisms of I'(D,)

In this section, we discuss some isomorphism results of I'(D,). The first
result (Theorem 3.2.10) shows that co-maximal graph of D,, uniquely de-
termines n. The second result (Theorem 3.2.11) is more general in nature.
It shows that nilpotent dihedral groups are uniquely determined by their

comaximal subgroup graphs.

~

Lemma 3.2.8 Let n and m be two positive integers such that T'(D,,)

['(D,,). Then n and m are of same factorization type.

Proof : AsI'(D,) = I'(D,,), from Theorem 3.2.4, it follows that n and m
have same parity. Thus, by Theorem 3.2.8, w(n) = w(m), i.e., m and n have
same number of distinct prime factors. So we assume that n = p{"'p5* - - - p.*

and m = qlﬁlqg2 x -q,fk.

Consider the Type-I vertices other than (r) in I'(D,)). Note that {(rPt), (r1), ...

is one of the twin class of size «;. Similarly, we get twin classes of size
o, a3, ..., oy, Again, note {(rPiPz), (pPiP2) .. (pPr'P2°)) s a twin class of
size ajan. Proceeding this way, Type-I vertices other than (r), can be par-

titioned into twin classes of size
P, ={a1,ag, ..., ap, 0109, asag, ..., 100 - - Qg )
Similarly for I'(D,,), we get

P = {81, B2, .., B, B1B2, Baf3, ..., B1B2 -+ - B}
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As I'(D,) = I'(D,,), we have P, = P,,. If a; = S, for some o € 5,
we are done. If no o; is equal to any f;, then without loss of generality, let
a; = min{ay, g, ..., 1, B2, ..., Bk }. Therefore, oy < f; for all i. Thus
oy € P, but ay € P,,, as 5; > «y. This contradicts the fact P, = P,,. Thus
some «;’s are equal to some ;. By suitable renaming, let oy = S, 0 =
Ba,...,qa; = B; and none of «;.1,...,a; is not equal to any of B;.1,..., B.
Therefore each of a1, ...,y is product of atleast two §;’s. Similarly, each
of Bit1, ..., Bk is product of atleast two a;’s.

We remove all the terms involving aq, as, ..., q; from P, to get a new
set P. Similarly, we remove all the terms involving 1, 5s, ..., 5; from P,
to get a new set P/ . Hence we have P, =P/ .

Let aj,, -+ a; be the smallest element of P/. Then at least one of
Qs Qs - -« y, does not belong to {ay, as, ..., a;}. Let oy, ¢ {ag, a9,. .., a;}.
Then o, € P} and oy, < o, - - - oy,. Thus a, is also smallest in P, = P/

Therefore o, = B,6j, - B;, € P,,. Arguing similarly, without loss of
generality, 3;, is the smallest element in P),. Thus «;, = §;,, a contradiction.

Hence, a; = B,(;) for some o € S; and the theorem follows. [l

~

Theorem 3.2.10 Let n and m be two positive integers such that T'(D,,)
I'(D,,). Then n =m.

Proof : From Lemma 3.2.8, we get that n = pi'p5>---p,* and m =

ay Q2 A

q,'qy° ---q,". Thus, it suffices to show that p; = ¢; for all . We con-

sider the case when both m and n are odd. The case when both m and n

are even can be handled similarly.
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Consider the maximum clique A = {(r), (r?*,s), (rP2,s),..., (r’, s)} of
I'*(D,) as defined in the proof of Theorem 3.2.8. Note that it contains
exactly one vertex of Type-I and k-vertices of Type-11. As I'(D,,) = I'(D,,),
under any isomorphism, A is mapped to a maximum clique B of I'*(D,,).

Without loss of generality,
B = {{r), (r, r'1s), (rf2, r2s), ... (r® r'*s)}.

Now, consider the number of Type-I and Type-II neighbours of Type-II
vertices in A. For example, (17, s) has (7(n/p;*) — 1) many Type-I neigh-
bours and (o(n/p;*) — 1) many Type-II neighbours in I'*(D,,). Similarly,
we can compute the number of Type-I and Type-II neighbours of Type-
IT vertices in B. As I'(D,) = I'(D,,), the following two sets consisting of

ordered pairs are equal.
{(r(n/p:™), o(n/p1™)), (T(n/p2*), 0 (n/p2"2)), ... (T(n/pe™), o (n/pi*)) }

={(r(m/q™),o(m/q1™")), (T(m/@2"), 0(m/q"*)), ..., (T(m/q™), o (m/q1"*)).

Again, as 7(m) = 7(n),o(m) = o(n) and 7,0 are multiplicative functions,

we have
{(r(0™), a(p1™)), (T(p2"?), 0 (p2")), - - ., (T(2&™), o (P™)) }

={((a™),o(a™)), (7(22"), 0(22™)), ... (T(@x™), o (a™)) }
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As these two sets are equal, there exists ¢ such that (7(p1®), o(p1®)) =
(7(q:*),0(q;")), i.e., a7 = «; and hence o(p1™) = o(¢;™), i.e., p1 = ¢.
Similarly, it can be shown that set of prime factors of m and n are same

and as a result, m = n. U

Theorem 3.2.11 Let G be a finite solvable group such that I'(G) = T'(Da«).
Then G = Dsa.

Proof : As I'"(D) has a unique universal vertex, namely (r) and all
other Type-I vertices are isolated, we get a subgroup H which is the unique
universal vertex in I'*(G).

Claim 1: H is a maximal subgroup G and H < G.
Proof of Claim 1: If there exists a proper subgroup X of G such that
H C X, then deg(H) < deg(X) in I'(G), a contradiction. Thus H is a
maximal subgroup of G. If H is not normal in G, there exists g € GG such
that H = gHg ! # H. Note that K ~ H if and only if gK¢g! ~ gHg™!,
i.e., deg(H) = deg(H'), a contradiction. Thus H < G.

From Claim 1, it follows that G/H is a prime order group, i.e., |G : H] =
p, for some prime p. Thus |G| = p®m and |H| = p®~tm, where p { m.

Claim 2: GG is a group of prime power order.
Proof of Claim 2: Let g be a prime factor of m and K be a Sylow ¢g-subgroup
of G. If K € H, then KH =G, i.e.,

b a—1 b\ (na—1
p'm = (q|l)§pﬂ KT) = (4 )(];t m) = """ 'm, ie., ¢ =p, a contradiction.
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Thus if ¢ is a prime factor of m, then every Sylow g¢-subgroup K of G is
contained in H. Thus K corresponds to a Type-I vertex in I'(Ds.) and
hence, if K # H, then K is an isolated vertex in ['(Dy.). However, as G is
solvable, K has a Hall complement L of order p*m/q’ in G, ie., KL = G,
i.e., K ~ L. Thus either m has no prime factor, i.e., m=1or K = H. If
m = 1, then G is p-group and the claim holds. If K = H, then |H| = ¢,
i.e., a =1and |G| = pg.

Again, note that I'*(Ds.) has exactly two Type-II vertices of second
highest degree, namely (r?, s) and (r?, rs) and every other Type-II vertices is
adjacent to exactly one of (r?, s) and (r?,rs). Let K1, K5 be the two vertices
in I*(G) corresponding to (r? s) and (r? rs) respectively. As H is the
universal vertex in ['*(G), we have H ~ K; and H ~ Ks, i.e., K1, Ko € H.
Thus |K;| = p¢" and |Ks| = pg'2. Again, as (r?,s) ~ (r? rs), we have
Ky~ Ky, ie., KKy =G, ie.,

»  pq" - pg”

= -' ., K ﬂK — t1+t2—b'
|K1ﬂK2’ 1.e | 1 2’ pq

pq

Ifp#q KiNKy € H,ie, H~ K;N Ky and K; N Ky corresponds to
a Type-II vertex. Hence, K; N Ky must be adjacent to one of K7 and Ko.
However, K1 N Ky C Kj, Ko, this is a contradiction. Thus we must have

p = q and |G| = p"*".

Hence Claim 2 holds. As G is a group of prime-
power order, GG is nilpotent and I'*(G) has a unique universal vertex. Thus
by Theorem 3.6 in [23], G must belong to one of the five families of groups,

namely 3,4,5,6,7. As I'"(Zyn1 x Z,) and I'"(M,») has p many universal
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vertices, G is not isomorphic to Zy.-1 x Z, or M,». Again, as I'"(SDsn) a
unique vertex of second highest degree, G is not isomorphic to SDgn. If
G = @9, then number of isolated vertices in I'(G) is n — 2 and the second
highest degree is 2" 2. However, I'(Ds.) has o — 1 isolated vertices and its
second highest degree is 2%. This is a contradiction and hence G 2 Qon.

Hence G = Dyn-1. Finally, comparing the number of isolated vertices, we

get G = Do O

3.3 Conclusion and Open Issues

In this chapter, we discussed various properties related to comaximal sub-
group graph of Z, and D,,. However, some of the isomorphism problems

are yet to be answered and can be interesting topics of further research.

e If GG is a finite group such that I'(G) = I'(Z,,), what can we say about
G?

e For the same question pertaining to D,,, a partial answer is provided

in Theorem 3.2.11. Although the general case is still open.
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