
Chapter 3

Co-Maximal Subgroup Graph of Zn

and Dn

In this chapter, we study various properties of co-maximal subgroup graph

of Zn and Dn.

3.1 Co-Maximal Subgroup Graph of Zn

We start with some basic properties of Γ(Zn) and Γ∗(Zn). As for any cyclic

p-group G, Γ(Zn) is empty, throughout the paper, we consider Γ(Zn) where

n is not a prime power.

3.1.1 Basic Properties of Γ(Zn)

In this section, we study some basic properties of Γ(Zn) and Γ∗(Zn) like

connectedness, degree, diameter etc.
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Lemma 3.1.1 Let H = ⟨x⟩ and K = ⟨y⟩ be two subgroups of Zn where x, y

divide n. Then H ∼ K in Γ(Zn) if and only if gcd(x, y) = 1.

Proof : It follows from Bezout’s theorem and the observation that HK =

{sx+ ty : s, t ∈ Z}. □

Theorem 3.1.1 Let n = p1
α1p2

α2 · · · pkαk, where pi’s are distinct primes

and αi ≥ 1. Let H = ⟨p1β1p2
β2 · · · pkβk⟩ be a subgroup of Zn, where βi ≤ αi.

Then degree of H in Γ(Zn) is

deg(H) =





0, if βi ̸= 0, ∀i,

Y

j:βj=0

(αj + 1)− 1, otherwise.

Proof : Follows from Lemma 3.1.1. □

Corollary 3.1.2 Let n = p1
α1p2

α2 · · · pkαk, where pi’s are distinct primes

and αi ≥ 1. Then Γ∗(Zn) is Eulerian if and only if n is a perfect square.

Proof : If n is a perfect square, then each αi is even and by Theorem

3.1.1, degree of every vertex of Γ∗(Zn) is even and hence Γ∗(Zn) is Eulerian.

If n is not a perfect square, then there exists i such that αi is odd. Let

H = ⟨p1α1 · · · pi−1
αi−1pi+1

αi+1 · · · pkαk⟩. Then by Theorem 3.1.1, deg(H) =

αi, which is odd. Thus Γ∗(Zn) is not Eulerian. □

Theorem 3.1.2 Let n = p1
α1p2

α2 · · · pkαk, where pi’s are distinct primes

and αi ≥ 1. Then Γ(Zn) has exactly α1α2 · · ·αk − 1 isolated vertices.
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Proof : Since G is a cyclic non p-group of order n = p1
α1p2

α2 · · · pkαk .

Then, G ∼= Zn. By Lemma 3.1.1, H = ⟨p1p2 · · · pk⟩ is an isolated vertex in

Γ(G). Similarly, if x is a multiple of p1p2 · · · pk which divides n, then ⟨x⟩ is
an isolated vertex in Γ(G).

Let A = ⟨a⟩ with a|n be a subgroup of G such that A is an isolated

vertex in Γ(G). As G has a unique subgroup of order corresponding to each

factor of n and for any non-trivial proper subgroup H of G, we have A ̸∼ H

in Γ(G), we have gcd(a,m) ̸= 1 for any factor m of |G| = n. Thus pi|a for

all i, i.e., a is a multiple of p1p2 · · · pk which divides n.

Hence the number of isolated vertices in Γ(G) is α1α2 · · ·αk − 1. □

Corollary 3.1.3 Γ(Zn) is connected if and only if n is square-free.

Proof : Let n = p1
α1p2

α2 · · · pkαk . The corollary follows from the fact that

α1α2 · · ·αk − 1 = 0 if and only if n is square-free. □

Theorem 3.1.3 Let G be a cyclic non p-group of order n = p1
α1p2

α2 · · · pkαk,

where pi’s are distinct primes and αi ≥ 1. Then diam(Γ∗(G)) =





2, if k = 2

3, if k ≥ 3

Proof : It is clear that the number of maximal subgroups ofG is k. If k = 2,

then the vertices of Γ∗(G) are ⟨p1⟩, ⟨p12⟩, . . . , ⟨p1α1⟩, ⟨p2⟩, ⟨p22⟩, . . . , ⟨p2α2⟩
and any two non-adjacent vertices always have a common neighbour either

⟨p1⟩ or ⟨p2⟩. Hence its diameter is 2.

If k ≥ 3, then ⟨p1p2 · · · pk−1⟩ and ⟨p2p3 · · · pk⟩ are non-adjacent vertices

in Γ∗(G) and they do not have any common neighbour. Thus their distance

is greater than 2. Now, as Zn is nilpotent, we have diam(Γ∗(G)) = 3. □
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Theorem 3.1.4 Let G be a cyclic non p-group of order n = p1
α1p2

α2 · · · pkαk,

where pi’s are distinct primes and αi ≥ 1. Then Γ(G) has pendant vertices

if and only if αi = 1 for some i.

Proof : Let G be a cyclic group of order n = p1
α1p2

α2 · · · pkαk , where at

least one αi = 1, say α1 = 1, i.e., n = p1p2
α2 · · · pkαk . Then ⟨p2p3 · · · pk⟩ is a

pendant vertex in Γ(G), which is adjacent to ⟨p1⟩.
Conversely, let G be a cyclic group of order n = p1

α1p2
α2 · · · pkαk such

that Γ(G) has at least one pendant vertex. If possible, let αi ≥ 2 for all i.

Let H = ⟨m⟩ be a pendant vertex in Γ(G) where m|n. If pi|m for all i, then

H is an isolated vertex, a contradiction. Thus, m misses at least one prime

factor. Let m = p2
β2 · · · pkβk where 0 ≤ βi ≤ αi. But this implies that H is

adjacent to the vertices ⟨p1⟩, ⟨p12⟩, . . . , ⟨p1α1⟩. As α1 ≥ 2, H can not be a

pendant vertex. Thus, at least some αi must be 1. □

3.1.2 Hamiltonicity, Perfectness and Dominating Sets of Γ(Zn)

In this section, we characterize the values of n for which Γ∗(Zn) is perfect

and hamiltonian. We also find the domination number of Γ∗(Zn).

Theorem 3.1.5 Let n = p1
α1p2

α2 · · · pkαk, where pi’s are distinct primes

and αi ≥ 1. Then Γ∗(Zn) is Hamiltonian if and only if k = 2 and α1 = α2.

Proof : If k = 2 and α1 = α2, then n = p1
α1p2

α1. We now explicitly

construct the hamiltonian circuit in Γ∗(Zn):
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⟨p1⟩ ∼ ⟨p2⟩ ∼ ⟨p21⟩ ∼ ⟨p22⟩ ∼ ⟨p31⟩ ∼ ⟨p32⟩ ∼ · · · ∼ ⟨pα1
1 ⟩ ∼ ⟨pα1

2 ⟩ ∼ ⟨p1⟩.

Conversely, let Γ∗(Zn) be Hamiltonian. If possible, let k ≥ 3. If αi = 1

for some i, then the graph has a vertex of degree 1 and hence it is not

hamiltonian. Thus, we assume that αi ≥ 2 for all i. Without loss of

generality, let α1 = min{α1,α2, . . . ,αk}. Now, the vertices of the form

⟨p2α′
2p3

α′
3 · · · pkα′

k⟩ are adjacent only to the vertices of the form ⟨p1α′
1⟩, where

1 ≤ α′
i ≤ αi, i.e., we have α2α3 · · ·αk vertices of degree α1. As two vertices

of the form ⟨p2α′
2p3

α′
3 · · · pkα′

k⟩ are not adjacent, to complete a hamiltonian

cycle, we need at least α2α3 · · ·αk different vertices between the vertices of

the form ⟨p2α′
2p3

α′
3 · · · pkα′

k⟩. But, as k ≥ 3, we have α2α3 · · ·αk > α1. This

leads to a contradiction. Thus k = 2 and n = p1
α1p2

α2.

As earlier, we can assume that α1,α2 ≥ 2. Let, if possible, α1 ̸= α2.

Without loss of generality, let 2 ≤ α1 < α2. Now, on any hamiltonian

circuit in Γ∗(Zn), between any two vertices of the form ⟨p1i⟩ and ⟨p1j⟩ we

have a vertex of the form ⟨p2t⟩ and between any two vertices of the form

⟨p2i⟩ and ⟨p2j⟩ we have a vertex of the form ⟨p1t⟩. Thus any Hamiltonian

circuit should consist of an alternating run of vertices of the form ⟨p1i⟩ and
⟨p2j⟩. However, as α1 < α2, we have more vertices of the form ⟨p2j⟩ than

that of the form ⟨p1i⟩, a contradiction. Thus α1 = α2. □

Theorem 3.1.6 Let n = p1
α1p2

α2 · · · pkαk, where pi’s are distinct primes

and αi ≥ 1. Then Γ∗(Zn) is perfect if and only if k ≤ 4.
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Proof : If k ≥ 5, then there exists an induced 5-cycle in Γ∗(Zn) as shown

in Figure 3.1.2. Thus, in this case, Γ∗(Zn) is not perfect. Let k ≤ 4,

i.e., n has at most 4 distinct prime factors p1, p2, p3, p4. Let, if possi-

ble, Γ∗(Zn) admits an induced odd cycle of length t ≥ 5, say ⟨h1⟩ ∼
⟨h2⟩ ∼ · · · ∼ ⟨ht⟩ ∼ ⟨h1⟩. From the non-adjacency relations, we get

gcd(h1, h3), gcd(h1, h4), gcd(h2, h4), gcd(h2, h5), gcd(h3, ht) ̸= 1.

Let p1 | gcd(h1, h3). Then p1 | h1 and p1 | h3. Again, as ⟨ht⟩ ∼ ⟨h1⟩, we
have gcd(h1, ht) = 1, i.e., p1 ∤ ht.

Similarly, as ⟨h3⟩ ∼ ⟨h4⟩, we have p1 ∤ h4, i.e., p1 ∤ gcd(h1, h4). Let

p2 | gcd(h1, h4). Then p2 | h1 and p2 | h4. Now as ⟨h3⟩ ∼ ⟨h4⟩, we have

p2 ∤ h3.

Again, as p1, p2 | h1 and ⟨h1⟩ ∼ ⟨h2⟩, we have p1, p2 ∤ h2, i.e., p1, p2 ∤

gcd(h2, h4). Let p3 | gcd(h2, h4). Then p3 | h2 and p3 | h4. As ⟨h2⟩ ∼ ⟨h3⟩,
we have p3 ∤ h3.

Thus p1, p2, p3 ∤ gcd(h3, ht). Let p4 | gcd(h3, ht). Then p4 | h3 and p4 | ht.

As ⟨h2⟩ ∼ ⟨h3⟩, we have p4 ∤ h2. Again, as ⟨h4⟩ ∼ ⟨h5⟩, we have p3 ∤ h5.

From the above situation, we get p1, p2, p3, p4 ∤ gcd(h2, h5). This is a

contradiction, as gcd(h2, h5) ̸= 1 and k ≤ 4. Thus Γ∗(Zn) does not admit

any induced odd cycle of length t ≥ 5.

Let, if possible, Γ∗(Zn)
c admits an induced odd cycle of length t ≥ 5, say

⟨h1⟩ ∼ ⟨h2⟩ ∼ · · · ∼ ⟨ht⟩ ∼ ⟨h1⟩. Note that in the complement graph, two

vertices ⟨hi⟩ and ⟨hj⟩ are non-adjacent/adjacent according as gcd(hi, hj) is

equal/not equal to 1 respectively.
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As ⟨h1⟩ ∼ ⟨h2⟩, we have gcd(h1, h2) ̸= 1. Let p1 | gcd(h1, h2). Then

p1 | h1 and p1 | h2. As gcd(h1, h3) = 1, we have p1 ∤ h3, i.e., p1 ∤

gcd(h2, h3). Similarly, we can conclude that p1 does not divide any one

of gcd(h3, h4), gcd(h4, h5), gcd(h1, ht).

Let p2 | gcd(h2, h3). Then p2 | h2 and p2 | h3. As gcd(h2, h4) = 1, we

have p2 ∤ h4, i.e., p2 does not divide gcd(h3, h4) and gcd(h4, h5). Similarly,

as gcd(h2, ht) = 1, we have p2 ∤ ht, i.e., p2 ∤ gcd(h1, ht).

As p1, p2 ∤ gcd(h3, h4), let p3 | gcd(h3, h4). Then p3 | h3 and p3 | h4.

As gcd(h1, h3) = 1, we have p3 ∤ h1, i.e., p3 ∤ gcd(h1, ht). Similarly, as

gcd(h3, h5) = 1, we have p3 ∤ h5, i.e., p3 ∤ gcd(h4, h5).

As p1, p2, p3 ∤ gcd(h4, h5), let p4 | gcd(h4, h5). Then p4 | h4 and p4 | h5.

As gcd(h1, h4) = 1, we have p4 ∤ h1, i.e., p4 ∤ gcd(h1, ht).

Thus p1, p2, p3, p4 ∤ gcd(h1, ht). But this is a contradiction, as gcd(h1, ht) >

1 and n has at most four distinct prime factors. Thus Γ∗(Zn)
c does not ad-

mit an induced odd cycle of length t ≥ 5.

Hence, by strong perfect graph theorem, the theorem follows. □

⟨[p1p5]⟩

⟨[p1p2]⟩

⟨[p2p3]⟩

⟨[p4p5]⟩ ⟨[p3p4]⟩

Figure 3.1: Induced 5-cycle in Γ∗(Zn), for k ≥ 5

Theorem 3.1.7 Let n = p1
α1p2

α2 · · · pkαk, where pi’s are distinct primes,
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k ≥ 2 and αi ≥ 1. Then

γ(Γ∗(Zn)) =





1, if n = p1
α1p2.

k, otherwise.

Proof : Clearly {⟨p1⟩, ⟨p2⟩, . . . , ⟨pk⟩} is a dominating set for Γ∗(Zn) of size

k. Thus γ(Γ∗(Zn)) ≤ k.

Let S = {⟨x1⟩, ⟨x2⟩, . . . , ⟨xk−1⟩} be a dominating set of Γ∗(Zn) of size k−
1. Let m = p1p2p3 · · · pk. Out of the k vertices ⟨m/p1⟩, ⟨m/p2⟩, . . . , ⟨m/pk⟩,
at least one does not belong to S. Without loss of generality, let ⟨m/p1⟩ /∈ S

and ⟨m/p1⟩ ∼ ⟨x1⟩. Thus, by Lemma 3.1.1, x1 = p
α′
1

1 , where 1 ≤ α′
1 ≤ α1.

Thus ⟨x1⟩ is not adjacent to any of the k−1 vertices ⟨m/p2⟩, ⟨m/p3⟩, . . . , ⟨m/pk⟩.
Again, by similar argument, not all of these k − 1 vertices belong to S.

Without loss of generality, let ⟨m/p2⟩ /∈ S and ⟨m/p2⟩ ∼ ⟨x2⟩. Proceeding

similarly, we get x2 = p
α′
2

2 , where 1 ≤ α′
2 ≤ α2. Thus ⟨x1⟩ and ⟨x2⟩ are not

adjacent to any of the k−2 vertices ⟨m/p3⟩, . . . , ⟨m/pk⟩. Continuing in this

way, we get xi = p
α′
i

i for i = 1, 2, . . . , k − 1. However, in that case, ⟨m/pk⟩
neither belong to S nor adjacent to any element of S, a contradiction. Hence

γ(Γ∗(Zn)) = k.

Note that the proof does not work if k = 2 and exactly one of the two

powers is 1. Because in that case, one of ⟨m/p1⟩ and ⟨m/p2⟩ is not a vertex

of Γ∗(Zn), i.e., an isolated vertex of Γ(Zn). If k = 2 and n = p1
α1p2, then

⟨p2⟩ dominates Γ∗(Zn). □
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3.1.3 Isomorphisms

In this section, we discuss the conditions under which co-maximal subgroup

graphs defined over different cyclic groups are isomorphic. For that, we

start with the following definition.

Definition 3.1.1 Two positive integers n and m are said to be of same

prime-factorization type if n = p1
α1p2

α2 · · · pkαk and m = q1
β1q2

β2 · · · qkβk

where pi, qi’s are primes and there exists σ ∈ Sk such that αi = βσ(i) for

i = 1, 2, . . . , k.

Theorem 3.1.8 Let n and m be two integers. Then Γ(Zn) ∼= Γ(Zm) if and

only if m and n are of same prime-factorization type.

Proof : If m and n are of same prime-factorization type, then the result is

obvious. Let Γ(Zn) ∼= Γ(Zm), then as their clique numbers are equal, bothm

and n have same number of distinct prime factors. Let n = p1
α1p2

α2 · · · pkαk

and m = q1
β1q2

β2 · · · qkβk. Also as they have same number of isolated ver-

tices, we have α1 · α2 · · ·αk = β1 · β2 · · · βk.
Without loss of generality, let α1 = min{α1,α2, . . . ,αk, β1, β2, . . . , βk}.

If possible, let α1 ̸∈ {β1, β2, . . . , βk}. Now, note that any vertex of the form

⟨p2α′
2p3

α′
3 · · · pkα′

k⟩ (1 ≤ α′
i ≤ αi) in Γ(Zn) is adjacent to only α1 vertices,

namely ⟨p1⟩, ⟨p21⟩, . . . , ⟨pα1
1 ⟩. Thus Γ(Zn) has α2α3 · · ·αk vertices of degree

α1. As α1 ≤ min{β1, β2, . . . , βk} and α1 ̸∈ {β1, β2, . . . , βk}, from Theorem

3.1.1, it follows that Γ(Zm) has no vertex of degree α1, a contradiction.

Thus α1 = βi for some i. By suitable renaming, let α1 = β1.

62



Again, without loss of generality, let α2 = min{α2, . . . ,αk, β2, . . . , βk}.
If possible, let α2 ̸∈ {β2, . . . , βk}. If α2 ̸= β1, then by similar argument,

Γ(Zm) has no vertex of degree α2, a contradiction. Thus, we assume that

α2 = α1 = α2. Then Γ(Zn) has α2α3 · · ·αk + α1α3 · · ·αk of degree α1 and

Γ(Zm) has β2β3 · · · βk of degree α1. As Γ(Zn) ∼= Γ(Zm), we have

α2α3 · · ·αk + α1α3 · · ·αk = β2β3 · · · βk,

i.e., α3 · · ·αk(α1 + α2) =
α1 · α2 · · ·αk

β1
(as α1 · α2 · · ·αk = β1 · β2 · · · βk)

i.e., β1(α1 + α2) = α1α2, i.e., 2α
2
1 = α2

1, a contradiction.

Thus α2 = βi for some i ∈ {2, 3, . . . , k}. By suitable renaming, let α2 = β2.

Proceeding this way, suppose in the (l−1)-th step, we get αi = βi for i =

1, 2, . . . , l−1. Without loss of generality, let αl = min{αl, . . . ,αk, βl, . . . , βk}.
If possible, let αl ̸∈ {βl, . . . , βk}. If αl /∈ {β1, β2, . . . , βl−1}, then by similar

argument, Γ(Zm) has no vertex of degree αl, a contradiction. Thus, we

assume that αl ∈ {β1, β2, . . . , βl−1}. Let αl = βp = βp+1 = · · · = βl−1 =

αp = αp+1 = · · · = αl−1 for some 1 ≤ p ≤ l − 1.

Therefore, Γ(Zn) has

(α1α2 · · ·αp−1αp+1 · · ·αk)+(α1 · · ·αpαp+1 · · ·αk)+· · ·+(α1 · · ·αl−1αl+1 · · ·αk)

= α1 · · ·αk

�
1

αp
+

1

αp+1
+ · · ·+ 1

αl

�
vertices of degree αl.
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Similarly, Γ(Zm) has

β1 · · · βk
�

1

βp
+

1

βp+1
+ · · ·+ 1

βl−1

�
vertices of degree αl.

Now, as Γ(Zn) ∼= Γ(Zm), we have

α1 · · ·αk

�
1

αp
+

1

αp+1
+ · · ·+ 1

αl

�
= β1 · · · βk

�
1

βp
+

1

βp+1
+ · · ·+ 1

βl−1

�

i.e.,

�
1

αp
+

1

αp+1
+ · · ·+ 1

αl

�
=

�
1

αp
+

1

αp+1
+ · · ·+ 1

αl−1

�
⇒

�
l − p+ 1

αl

�
=

�
l − p

αl

a contradiction. Thus, by suitable renaming, we get αl = βl, and hence by

induction, the theorem follows. □

3.2 Co-Maximal Subgroup Graph of Dn

In this section, we study the comaximal subgroup graph on finite dihedral

groups, denoted by Γ(Dn).

3.2.1 Structural Properties of Γ(Dn) and Γ∗(Dn)

We characterize various structural properties of Γ(Dn) and Γ∗(Dn) of like

order, maximum and minimum degree, girth, diameter and when they are

Eulerian. We start by describing the complete list of subgroups ofDn, which

constitute the vertex set of the graph to be studied.

The dihedral group Dn has two generators r and s with orders n and 2

such that srs−1 = r−1. Dn = ⟨r, s : rn = s2 = 1, srs = rn−1⟩ consists of 2n
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elements. We recall a result on the complete list of subgroups of Dn. For a

proof of this listing, please refer to [22].

Proposition 3.2.1 Every subgroup of Dn is either cyclic or dihedral. A

complete listing of the subgroups is as follows:

1. ⟨rd⟩, where d|n, with index 2d,

2. ⟨rd, ris⟩, where d|n and 0 ≤ i ≤ d− 1, with index d.

Moreover, every subgroup of Dn occurs exactly once in this listing.

Proposition 3.2.2 Γ(Dn) has σ(n) + τ(n)− 2 vertices.

Proof : Γ(Dn) contains all subgroups of the form ⟨rd⟩, where d|n and

d ̸= n. We call this vertices of Type-I, and so number of Type-I vertices

is τ(n) − 1. Similarly, Γ(Dn) contains all subgroups of the form ⟨rd, ris⟩,
where d|n and 0 ≤ i ≤ d− 1 except d = 1. We call this vertices of Type-II,

and so number of Type-II vertices is σ(n)− 1. □

Now, we investigate the adjacency between vertices of Γ(Dn). It is clear

that no two vertices of Type-I are adjacent. Thus, any edge of Γ(Dn) occurs

either between two vertices of Type-II or one of Type-I and one of Type-II.

The edges in Γ(Dn) are completely classified in the next theorem.

Theorem 3.2.1 The following are the edges of Γ(Dn):

• A vertex ⟨rd1⟩ of Type-I is adjacent to a vertex ⟨rd2, ris⟩ of Type-II if

and only if gcd(d1, d2) = 1.
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• Two vertices ⟨rd1, ris⟩ and ⟨rd2, rjs⟩ of Type-II are adjacent if and only

if one of the two conditions hold:

1. gcd(d1, d2) = 1.

2. gcd(d1, d2) = 2 and i− j is odd.

Proof :

• Let H = ⟨rd1⟩ and K = ⟨rd2, ris⟩. We start by noting that HK = Dn

if and only if r ∈ HK. If gcd(d1, d2) = 1, then there exist integers u, v

such that ud1 + vd2 = 1. Thus, r = (rd1)u · (rd2)v ∈ HK. Conversely,

as r /∈ H,K, but r ∈ HK, we must get r as product of powers of rd1

and rd2, i.e., gcd(d1, d2) = 1.

• Let H = ⟨rd1, ris⟩, K = ⟨rd2, rjs⟩ and H ∼ K. Then HK = Dn. If

d = gcd(d1, d2), then there exist integers x, y such that d1x+ d2y = d,

i.e., rd = (rd1)x(rd2)y ∈ HK = Dn. Thus ⟨rd⟩ ⊆ HK. Note that rd

is the smallest power of r that can expressed as product of powers of

rd1 and rd2. If d ≥ 3, then r and r2 must be expressible as products of

powers of rd1, ris, rd2 and rjs, i.e., there exist integers x1, x2, y1, y2 such

that

d1x1+d2x2+(i−j) ≡ 1 (mod n) and d1y1+d2y2+(i−j) ≡ 2 (mod n).

Subtracting, we get d1u+d2v ≡ 1 (mod n), i.e., d divides d1u+d2v−1,

i.e., d|1, a contradiction. Thus d = 1 or 2. If d = 1, we are done.

Suppose d = 2 and
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i−j is even. Note that d = 2 implies n is even. Now, as r ∈ HK, there

exist integers x and y such that d1x+ d2y + (i− j) ≡ 1 (mod n). But,

d1x+ d2y+ (i− j) is even and it can not be congruent to 1 modulo an

even number n. Thus i− j must be odd.

Conversely, let one of the conditions hold. If d = 1, then any integer

can be expressed as integer linear combination of d1 and d2. Thus for

any integer l, we have rl, rls ∈ HK, i.e., HK = Dn. If d = 2 and

i− j is odd, then n is even. As d = 2, r2 and all even powers of r can

expressed as product of powers of rd1 and rd2 and they belong to HK.

For odd powers of r to be in HK, we must have integers x, y such that

rd1x+d2y+(i−j) = r2t+1, i.e., d1x+ d2y + (i− j) ≡ 2t+ 1 (mod n)

2u = 2t+ 1 + j − i (mod n)

Note that as gcd(d1, d2) = d = 2, for any integer u, we can find x and

y such that d1x+ d2y = 2u. Also, 2t+1+ j− i is even. Thus, we have

u =
2t+ 1 + j − i

2
(mod n)

Hence for all values of t, u has a solution and all odd powers of r lies

in HK, i.e., ⟨r⟩ ⊆ HK.

Again, note that rd1x+d2y+is, rd1x+d2y+js ∈ HK for all values of x, y,

i.e., r2l+is, r2l+js ∈ HK for all value of l. As i− j is odd, i and j has

different parity, and hence by varying l suitably, all the elements of the

67



form rks ∈ HK. Thus HK = Dn, i.e., H ∼ K.

□

In the next few theorems, we find the maximum and minimum degree of

Γ(Dn), and its number of isolated and pendant vertices.

Theorem 3.2.2 The maximum degree of Γ(Dn) is σ(n)−1 and is attained

by ⟨r⟩.

Proof : Among Type-I vertices, ⟨r⟩ has the maximum degree and its degree

is 
 X

d|n,d ̸=1

d


− 1 = σ(n)− 1.

We claim that the degree of any Type-II vertex is less than σ(n)− 1.

Case 1: (n is odd, say n = pα1
1 pα2

2 · · · pαk

k , where pi’s are odd primes).

Let H = ⟨rd, ris⟩ be a Type-II vertex with d|n, d ̸= 1. Without loss of

generality, let p1 be a prime divisor of d. Set K = ⟨rd, s⟩ and L = ⟨rp1, s⟩.
Clearly K ⊆ L. As n is odd, d is also odd. Thus we have

set of neighbours of H = set of neighbours of K ⊆ set of neighbours of L.

Thus deg(H) = deg(K) ≤ deg(L). Consider the following two set of vertices

A = {⟨rd1, s⟩ : p1|d1, d1|n} and B = {⟨rd1⟩ : p1 ∤ d1}.

It is easy to check that all vertices in A are non-adjacent with L and B is

the exactly the set of vertices of Type-I which are adjacent to L. Note that
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|A| = α1(α2 + 1) · · · (αk + 1) and |B| = (α2 + 1) · · · (αk + 1). As there are

total (σ(n)− 1) many Type-II vertices and |A| ≥ |B|, we have

deg(H) ≤ deg(L) ≤ (σ(n)− 2)− |A|+ |B| ≤ σ(n)− 2 < σ(n)− 1.

Case 2: (n is even, say n = pα1
1 pα2

2 · · · pαk

k , where p1 = 2 and other pi’s

are odd primes). Let H = ⟨rd, ris⟩ be a Type-II vertex with d|n, d ̸= 1 and

pj be a prime divisor of n. According as i is even or odd, set K = ⟨rd, s⟩ or
⟨rd, rs⟩ respectively, and L = ⟨rpj , s⟩ or ⟨rpj , rs⟩, respectively. As in Case

1, we have deg(H) = deg(K) ≤ deg(L). Again, as in Case 1, construct the

sets A and B. The rest follows similarly and deg(H) < σ(n)− 1. Thus the

theorem follows. □

Theorem 3.2.3 Let n = pα1
1 pα2

2 · · · pαk

k . The number of isolated vertices in

Γ(Dn) is α1α2 · · ·αk − 1. Moreover, Γ(Dn) is connected if and only if n is

square-free.

Proof : Note that Type-II vertices are never isolated as they are always

adjacent to ⟨r⟩. A Type-I vertex ⟨rd⟩ is isolated if and only if p|d, for all

primes p|n, i.e., if n = pα1
1 pα2

2 · · · pαk

k , then the number of isolated vertices

are α1α2 · · ·αk − 1.

As Dn is solvable, it is connected if and only if it has no isolated vertex

if and only if α1α2 · · ·αk − 1 = 0 if and only if n is square-free. □
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Theorem 3.2.4 The minimum degree of Γ∗(Dn) is given by

δ(Γ∗(Dn)) =





1, if n is odd,

2, if n is even.

Proof : If n is odd, then ⟨s⟩ is adjacent only to ⟨r⟩, and hence δ = 1. If n

is even, then ⟨s⟩ is adjacent only to ⟨r⟩ and ⟨r2, rs⟩. Thus degree of ⟨s⟩ is
2. We need to show that no vertex have degree 1. Note that every Type-II

vertex is adjacent to ⟨r⟩ and exactly one of ⟨r2, s⟩ and ⟨r2, rs⟩, i.e., degree
of a Type-II vertex is ≥ 2. Let ⟨rd⟩ be a non-isolated Type-I vertex. Then

d misses atleast one prime factor of n, say p. Then ⟨rd⟩ is adjacent to ⟨rp, s⟩
and ⟨rp, rs⟩, i.e., its degree is ≥ 2. □

Corollary 3.2.3 Let n = pα1
1 pα2

2 · · · pαk

k be odd. The number of pendant

vertices in Γ(Dn) is

p1p2 · · · pk
kY

i=1

(pi
αi − 1)

(pi − 1)

Proof : If n is even, by Theorem 3.2.4, the minimum degree is 2 and hence

Γ(Dn) has no pendant vertex. So, we assume that n is odd.

We start by observing that Type-I vertices of the form ⟨rd⟩ are never

pendant, as if ⟨rd⟩ ∼ ⟨rx, ris⟩, then ⟨rd⟩ ∼ ⟨rx, rjs⟩ for j ̸= i. Thus Type-II

vertices are the only possible choices for pendant vertices.

Let ⟨rd, ris⟩ be a pendant vertex. If pi ∤ d for some i, then ⟨rd, ris⟩ is

adjacent to at least two vertices, namely ⟨r⟩ and ⟨rpi⟩. Thus pi|d for all i.

Finally, if pi|d for all i, then it is easy to observe that ⟨rd, ris⟩ is adjacent
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only to ⟨r⟩. Now, the corollary follows by counting the number of such

vertices. □

Proposition 3.2.4 The girth of Γ(Dn) is 3 for n ≥ 3 and n is not an odd

prime power.

Proof : If n is even, then ⟨r⟩, ⟨r2, s⟩ and ⟨r2, rs⟩ forms a triangle. If n is

odd, but not a prime power, then there exist two distinct prime factors, say

p, q of n. Then ⟨r⟩, ⟨rp, s⟩ and ⟨rq, s⟩ forms a triangle. □

Proposition 3.2.5 Γ∗(Dn) is a star if and only if n is an odd prime power.

Proof : Let n = pk where p is an odd prime. Then all Type-I vertices

except ⟨r⟩ are isolated in Γ(Dn) and ⟨r⟩ is an universal vertex in Γ∗(Dn).

Now, as any Type-II vertex is of the form ⟨rpl, ris⟩, no two of them are

adjacent and hence Γ∗(Dn) is a star.

Conversely, if Γ∗(Dn) is a star and n is not an odd prime power, by above

Proposition, Γ(Dn) has a triangle, a contradiction. □

As Dn is a finite solvable group, by Theorem 2.2.4, Γ∗(Dn) is connected

and its diameter is less than or equal to 4. In the next theorem, we compute

the diameter of Γ∗(Dn) and show that it is either 2 or 3.

Theorem 3.2.5

Diam(Γ∗(Dn)) =





2, n = pk

3, else
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Proof : If n is an odd prime power, by Proposition 3.2.5, Γ∗(Dn) is a star

and hence Diam (Γ∗(Dn)) = 2. If n = 2k, then by Theorem 3.6 [23], Γ∗(Dn)

has an universal vertex and hence Diam(Γ∗(Dn)) = 2.

If n is not a prime power, then n has at least two distinct prime factors.

Let n = pαqβm, where m is coprime to p and q. Then consider the vertices

A = ⟨rpa⟩ and B = ⟨rn/pa⟩. Clearly they are non-adjacent. As both are

Type-I vertices, if they have a common neighbour, it must be a Type-II

vertex, say ⟨rd, ris⟩. But that means d|n, d ̸= 1 and d is coprime to both pa

and n/pa, a contradiction. Thus A and B have no common neighbour, i.e.,

d(A,B) > 2. Consider the path ⟨rpa⟩ ∼ ⟨rq, s⟩ ∼ ⟨rp, s⟩ ∼ ⟨rn/pa⟩ and hence

d(A,B) = 3.

We claim that any two vertices are atmost at distance 3 from the other. If

both the vertices are of Type-II, then they always have a common neighbour

⟨r⟩ and hence their distance is atmost 2. If both are of Type-I and are not

isolated, say ⟨rd1⟩ and ⟨rd2⟩, then both d1 and d2 miss at least one prime

factor of n, say p and q. If p ̸= q, then ⟨rd1⟩ ∼ ⟨rp, s⟩ ∼ ⟨rq, s⟩ ∼ ⟨rd2⟩,
i.e., their distance is atmost 3. If p = q, then ⟨rd1⟩ ∼ ⟨rp, s⟩ ∼ ⟨rd2⟩, i.e.,
their distance is at most 2. Thus we are left with the case where one of

the vertex is of Type-I and other is of Type-II, say ⟨rd1⟩ and ⟨rd2, ris⟩. As

⟨rd1⟩ is not isolated, d1 misses at least one prime factor of n, say p. Thus

⟨rd1⟩ ∼ ⟨rp, s⟩ ∼ ⟨r⟩ ∼ ⟨rd2, ris⟩, i.e., their distance is at most 3. Hence the

theorem follows. □

In the next theorem, we check when Γ∗(Dn) is Eulerian.
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Theorem 3.2.6 Γ∗(Dn) is Eulerian if and only if n is even and all odd

prime factors of n are of even exponent.

Proof : Let Γ∗(Dn) be Eulerian. If n is odd, by Theorem 3.2.4, minimum

degree is 1, i.e., odd, a contradiction. So n must be even. Let n has an odd

prime factor p of odd exponent α, i.e., n = pαm, where m is even and p ∤ m.

Consider the vertex ⟨rm⟩. Observe that its only neighbours are of the form

⟨rp∗, ris⟩. Thus degree of ⟨rm⟩ is p+ p2+ · · ·+ pα, i.e., odd, a contradiction.

Hence all odd prime factors of n are of even exponent.

Conversely, let n be even and all odd prime factors of n are of even

exponent. Let n = 2αp1
α1p2

α2 · · · pkαk , where αi’s are even. We will show

that all non-isolated vertices have even degree.

Let us first consider the Type-I vertices of the form ⟨rd⟩. If d is divisible

by all the prime factors of n, then ⟨rd⟩ is an isolated vertex. So, we assume

that d is not divisible by some prime factors of n. Suppose pi1, pi2, . . . , pit

are the prime factors of n not dividing d. Then the neighbours of ⟨rd⟩ are
of the form ⟨rpi1β1pi2β2 ···pitβt , rjs⟩, where not all βi’s are zero simultaneously.

Thus degree of ⟨rd⟩ is σ(pi1
αi1pi2

αi2 · · · pitαit) − 1, which is even, as each αi

is even. Thus Type-I vertices are of even degree.

Now, we consider the Type-II vertices of the form ⟨rd, ris⟩. If d is divisible
by all the prime factors of n, then ⟨rd, ris⟩ has precisely two neighbours, ⟨r⟩
and exactly one of ⟨r2, s⟩ and ⟨r2, rs⟩. So, we assume that d is not divisible

by some prime factors of n. Suppose pi1, pi2, . . . , pit are the prime factors of

n not dividing d.
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Case 1: (2 ∤ d) In this case, the neighbours of ⟨rd, ris⟩ are of the form

⟨rpi1β1pi2β2 ···pitβt⟩ and ⟨rpi1β1pi2β2 ···pitβt , rjs⟩ where not all βi’s are zero. Thus

the degree of ⟨rd, ris⟩ is

τ(pi1
αi1pi2

αi2 · · · pitαit) + σ(pi1
αi1pi2

αi2 · · · pitαit)− 2,

which is even, as explained earlier.

Case 2: (2|d) In this case, apart from the neighbours mentioned in Case

1, ⟨rd, ris⟩ has neighbours of the form ⟨r2βpi1β1pi2β2 ···pitβt , rjs⟩, where i − j

is odd. However, proceeding similarly as above, it can be shown that the

number of such neighbours is also even. As a result the degree of Type-II

vertices are also even. This proves the theorem. □

3.2.2 Domination number, Chromatic Number and Perfectness

of Γ(Dn)

In this section, we study the domination number, chromatic number of

Γ(Dn) and characterize when Γ(Dn) is perfect.

Theorem 3.2.7 The domination number of Γ∗(Dn) is given by

γ(Γ∗(Dn)) =





1, if n is a prime power,

π(n) + 1, otherwise.

Proof : If n is a prime power, by Proposition 3.2.5, Γ∗(Dn) is a star and

hence the theorem follows. Let n = pα1
1 pα2

2 · · · pαk

k . Clearly {⟨r⟩, ⟨rp1, s⟩, ⟨rp2, s⟩, . . . , ⟨rpk

is a dominating set of Γ∗(Dn) and hence γ(Γ∗(Dn)) ≤ k + 1.
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If possible, let S = {x1, x2, . . . , xk} be a dominating set of size k. Setm =

p1p2 · · · pk and consider the set of k+1 verticesA = {⟨rm/p1⟩, ⟨rm/p2⟩, . . . , ⟨rm/pk⟩, ⟨rm, s⟩}
Among these k + 1 vertices, at least one of them is not in S. With-

out loss of generality, let ⟨rm/p1⟩ /∈ S and ⟨rm/p1⟩ ∼ x1. Then x1 is of

the form ⟨rpβ11 , ri1s⟩. Note that x1 is not adjacent to any one of k ver-

tices in the set A′ = {⟨rm/p2⟩, . . . , ⟨rm/pk⟩, ⟨rm, s⟩}. By similar argument,

not all of these k vertices in A′ belong to S. Without loss of gener-

ality, let ⟨rm/p2⟩ /∈ S and ⟨rm/p1⟩ ∼ x2. Proceeding similarly, we get

x2 = ⟨rpβ22 , ri2s⟩, . . . , xk = ⟨rpβkk , riks⟩.
If n is odd, then ⟨rm, s⟩ is not adjacent to any xi, a contradiction. If

n is even, then either ⟨rm, s⟩ or ⟨rm, rs⟩ is not dominated by any xi, a

contradiction. Hence, γ(Γ∗(Dn)) = k + 1. □

Theorem 3.2.8 Γ(Dn) is weakly perfect, i.e., the clique number and chro-

matic number of Γ(Dn) are given by

χ(Γ(Dn)) = ω(Γ(Dn)) =





π(n) + 1, if n is odd

π(n) + 2, if n is even.

Proof : We first deal with the case when n is odd, say n = pα1
1 pα2

2 · · · pαk

k ,

where pi’s are distinct odd primes. Consider the setA = {⟨r⟩, ⟨rp1, s⟩, ⟨rp2, s⟩, . . . , ⟨rpk , s
Clearly A forms a clique of size k+1 = π(n)+1, i.e., ω(Γ(Dn)) ≥ π(n)+1.

Let M be a maximum clique of Γ(Dn) of size t ≥ k + 2. If M contains

only vertices of Type-II, then M ∪ ⟨r⟩ is a clique properly containing M ,

a contradiction. Thus M always contains a vertex of Type-I. As no two
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vertices of Type-I are adjacent, M can have exactly one vertex of Type-I.

Without loss of generality, we can assume the Type-I vertex in M to be ⟨r⟩.
Let M = {⟨r⟩, ⟨ra1, rb1s⟩, ⟨ra2, rb2s⟩, . . . , ⟨rat−1, rbt−1s⟩}. Thus a1, a2, at−1 are

mutually coprime factors of n and ai ̸= 1. But as n has π(n) distinct prime

factors, it can have atmost π(n) = k < t−1 mutually coprime factors. Thus

ω(Γ(Dn)) = π(n) + 1.

Similarly, if n is even, i.e., n = 2α1pα2
2 · · · pαk

k , it can be easily checked

that B = {⟨r⟩, ⟨r2, s⟩, ⟨r2, rs⟩, ⟨rp2, s⟩, . . . , ⟨rpk , s⟩} is a clique of size k+2 =

π(n) + 2. Thus ω(Γ(Dn)) ≥ π(n) + 2. Let M be a maximum clique of

Γ(Dn) of size t. As in the previous case, M have exactly one vertex of

Type-I. Let M = {⟨r⟩, ⟨ra1, rb1s⟩, ⟨ra2, rb2s⟩, . . . , ⟨rat−1, rbt−1s⟩}. Arguing as

in the previous case, the number of odd divisors of n among a1, a2, at−1 is

atmost k− 1. Again due to the adjacency condition of Type-II vertices, the

number of odd divisors of n among a1, a2, at−1 is atmost 2. Thus M can

have atmost 1 + 2 + (k − 1) = k + 2 vertices, i.e., ω(Γ(Dn)) = π(n) + 2.

As χ ≥ ω, it suffices to produce a proper colouring using ω colours. If

n = pα1
1 pα2

2 · · · pαk

k is odd, define

A1 = {⟨rd⟩, ⟨rd, ris⟩ : p1|d}, A2 = {⟨rd⟩, ⟨rd, ris⟩ : p2|d} \ A1, · · · ,

Aj = {⟨rd⟩, ⟨rd, ris⟩ : pj|d} \
j−1[

l=1

Al, where j = 1, 2, . . . , k.

Observe that A1, A2, . . . , Ak are independent sets in Γ(Dn). We assign the

colour j to all the vertices in Aj and the k + 1 the colour to ⟨r⟩. It can be

76



easily checked that this is a proper colouring of Γ(Dn) using k+1 = π(n)+1

colours.

Similarly, if n is even, we construct similar independent sets for each

prime as above, with the following exception for the prime 2. For the

prime 2, we construct two sets X = {⟨rd⟩, ⟨rd, ris⟩ : 2|d, i is odd} and Y =

{⟨rd⟩, ⟨rd, ris⟩ : 2|d, i is even}. One can easily check that this gives a proper

colouring Γ(Dn) using π(n) + 2 colours. □

Theorem 3.2.9 Γ(Dn) is perfect if and only if one of the two conditions

hold:

• n is odd and π(n) ≤ 4.

• n is even and either π(n) ≤ 2 or π(n) = 3 and 4 ∤ n.

Proof : If n is odd and π(n) ≥ 5, let n = pα1
1 pα2

2 · · · pα5
5 m, where pi’s are odd

primes which are coprime to m. Then ⟨rp1p2, s⟩ ∼ ⟨rp3p4, s⟩ ∼ ⟨rp2p5, s⟩ ∼
⟨rp1p4, s⟩ ∼ ⟨rp3p5, s⟩ ∼ ⟨rp1p2, s⟩ is an induced 5-cycle in Γ(Dn) and hence

Γ(Dn) is not perfect.

Let n be odd and π(n) ≤ 4. Let C : x1 ∼ x2 ∼ · · · ∼ x2t+1 ∼ x1 be

an induced odd cycle in Γ(Dn). As n is odd and any subgroup of Dn is

of the form ⟨rd⟩ or ⟨rd, ris⟩, it follows from the adjacency condition that

⟨rd1⟩ ∼ ⟨rd2, ris⟩ or ⟨rd1, ris⟩ ∼ ⟨rd2, rjs⟩ if and only if gcd(d1, d2) = 1. Thus

for each vertex xi in C we can associate a factor di of n such that xi ∼ xj

if and only if gcd(di, dj) = 1. Now, by following the steps in the proof of

Theorem 3.2 in [39], one can show that Γ(Dn) is perfect.
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If n is even and π(n) ≥ 4, let n = 2α1pα2
2 · · · pα4

4 m, where pi’s are odd

primes which are coprime to m. Then ⟨rp2⟩ ∼ ⟨r2p2p3, rs⟩ ∼ ⟨rp3p4⟩ ∼
⟨r2p4, r2s⟩ ∼ ⟨r2p2, s⟩ ∼ ⟨rp2⟩ is an induced 5-cycle in the complement of

Γ(Dn) and hence Γ(Dn) is not perfect.

If π(n) = 3 and 4|n, let n = 2αpα2
2 pα3

3 where pi’s are odd primes. Then

⟨rp1⟩ ∼ ⟨r4, s⟩ ∼ ⟨rp2⟩ ∼ ⟨r2p1, s⟩ ∼ ⟨r4p2, rs⟩ ∼ ⟨rp1⟩ is an induced 5-cycle

in the complement of Γ(Dn) and hence Γ(Dn) is not perfect.

Thus, if n is even, we are left with two cases, either n = 2αpα2
2 or n =

2pα2
2 pα3

3 . These two cases are dealt with in the following two lemmas. □

Lemma 3.2.6 If n = 2αpα2
2 , then Γ(Dn) is perfect.

Proof : Note that any vertex of the form ⟨rd⟩ or ⟨rd, ris⟩ where 2p2|d are of

degree 0 or 2 respectively in Γ(Dn). In fact, ⟨rd, ris⟩ is adjacent to exactly

two vertices, namely ⟨r⟩ and exactly one of ⟨r2, s⟩ and ⟨r2, rs⟩. If possible,
let C : x1 ∼ x2 ∼ · · · ∼ x2t+1 ∼ x1 be an induced odd cycle of length atleast

5 in Γ(Dn). Clearly C must have atleast one Type-II vertex. As ⟨r⟩ does

not lie on C, any vertex of the form ⟨rd, ris⟩ where 2p2|d does not lie on C.

Claim A: If x1 = ⟨rd1, ris⟩ is a Type-II vertex on C, then d1 is even.

Proof of Claim A: If d1 is odd, then d1 = pβ2 . As x1 ̸∼ x3, x4, we have

x3 = ⟨rpa2⟩ or ⟨rpa2 , rjs⟩ and x4 = ⟨rpb2⟩ or ⟨rpb2, rks⟩. In any case, we have

x3 ̸∼ x4, a contradiction.

Claim B: There exists no Type-I vertex on C.

Proof of Claim B: If there exists two vertices, say x1, xk of Type-I on C.

Clearly they must be non-adjacent. Using Claim A, x1 = ⟨rpβ2 ⟩ and xk =
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⟨rpβ
′

2 ⟩. But as x2, x2t+1 ∼ x1, we must have xk ∼ x2, x2t+1, a contradiction.

So atmost one Type-I vertex can be on C, say x1 = ⟨rpβ2 ⟩. As x1 ̸∼ x3, x4

and both are Type-II vertices, by Claim A, we must have x3 = ⟨rd3, ris⟩
and x4 = ⟨rd4, rjs⟩ where 2p2 divides d3 and d4. However such vertices do

not lie on C.

Thus all the vertices on C are of Type-II, i.e., xl = ⟨rdl, rils⟩ for l =

1, 2, . . . , 2t + 1 where dl’s are even. Again from the adjacency condition,

we have all of i1 − i2, i2 − i3, . . . , i2t+1 − i1 to be odd. Adding all of them,

we get the sum of odd number of odd integers to be zero, a contradiction.

Thus Γ(Dn) has no induced odd cycle of length atleast 5. Similarly, it can

be shown that Γ(Dn)
c has no induced odd cycle of length atleast 5. Hence

Γ(Dn) is perfect. □

Lemma 3.2.7 If n = 2αpα2
2 pα3

3 , then Γ(Dn) is perfect

Proof : If possible, let C : x1 ∼ x2 ∼ · · · ∼ x2t+1 ∼ x1 be an induced odd

cycle of length atleast 5 in Γ(Dn). As no two Type-I vertices are adjacent,

thus we must have atleast t+ 1 ≥ 3 Type-II vertices in C.

Claim 1: ⟨rd, ris⟩, where 2p1p2|d does not lie in C.

Proof of Claim 1: Its only neighbours are ⟨r⟩ and exactly one of ⟨r2, s⟩ and
⟨r2, rs⟩. As ⟨r⟩ is adjacent to all Type-II vertices and there are atleast 3

Type-II vertices in C, ⟨r⟩ does not lie on C. Thus ⟨rd, ris⟩ can have atmost

one neighbour in C, which is a contradiction as C is a cycle.

Claim 2: None of ⟨r2, s⟩ and ⟨r2, rs⟩ lie in C.

Proof of Claim 2: If x1 = ⟨r2, s⟩ lies in C, then as ⟨r2, s⟩ is a maximal
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subgroup of index 2 in Dn, all of x3, x4, . . . , x2t are contained in x1. Thus,

using Claim 1, without of loss of generality, we can assume that x3 =

⟨r2pβ11 , ris⟩ and x3 = ⟨r2pβ22 , rjs⟩. As x3 ∼ x4, we have i − j is odd. On the

other hand, as x1 ̸∼ x3, x4, we must have i and j to be both even. This

contradicts the parity of i− j.

Claim 3: Vertices of the form ⟨rpβ11 p
β2
2 ⟩ and ⟨rpβ11 p

β2
2 , ris⟩ do not lie in C.

Proof of Claim 3: As ⟨rpβ11 p
β2
2 ⟩ is adjacent only with ⟨r2, s⟩ and ⟨r2, rs⟩, the

claim follows from Claim 2. Similarly, only neighbours of ⟨rpβ11 p
β2
2 , ris⟩ in

Γ(Dn) are ⟨r⟩, ⟨r2⟩ and exactly one of ⟨r2, s⟩ and ⟨r2, rs⟩. However, from

Claim 2, its only possible neighbour in C is ⟨r2⟩, a contradiction. Hence

Claim 3 holds.

Claim 4: ⟨r2⟩ lies in C.

Proof of Claim 4: Suppose ⟨r2⟩ does not in C. Then from Claims 1,2 and 3,

it follows that for any vertex ⟨rdi⟩ or ⟨rdi, ris⟩ in C, di must be of the form

pβ1

1 , pβ2

2 , 2pβ1

1 or 2pβ2

2 . Again, as C is cycle, di must be alternately divisible

by p1 and p2. But this contradicts that C is an odd cycle. Thus the claim

follows.

Let x1 = ⟨r2⟩ be a vertex on C. As x1 is a Type-I vertex, from the

adjacency condition and previous claims, without loss of generality, we have

x2 = ⟨rpβ1 , ris⟩ and x2t+1 = ⟨rpβ
′

1 , rjs⟩. Then x3 must be of one of the 4 forms,

namely ⟨rpβ22 ⟩, ⟨rpβ22 , rjs⟩, ⟨r2pβ22 ⟩ and ⟨r2pβ22 , rjs⟩. However, in any case, we

have x3 ∼ x2t+1, a contradiction. Thus Γ(Dn) has no induced odd cycle of

length atleast 5. □
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3.2.3 Isomorphisms of Γ(Dn)

In this section, we discuss some isomorphism results of Γ(Dn). The first

result (Theorem 3.2.10) shows that co-maximal graph of Dn uniquely de-

termines n. The second result (Theorem 3.2.11) is more general in nature.

It shows that nilpotent dihedral groups are uniquely determined by their

comaximal subgroup graphs.

Lemma 3.2.8 Let n and m be two positive integers such that Γ(Dn) ∼=
Γ(Dm). Then n and m are of same factorization type.

Proof : As Γ(Dn) ∼= Γ(Dm), from Theorem 3.2.4, it follows that n and m

have same parity. Thus, by Theorem 3.2.8, π(n) = π(m), i.e., m and n have

same number of distinct prime factors. So we assume that n = pα1
1 pα2

2 · · · pαk

k

and m = qβ1

1 qβ2

2 · · · qβk

k .

Consider the Type-I vertices other than ⟨r⟩ in Γ(Dn). Note that {⟨rp1⟩, ⟨rp21⟩, · · · , ⟨rp
α

is one of the twin class of size α1. Similarly, we get twin classes of size

α2,α3, . . . ,αk. Again, note {⟨rp1p2⟩, ⟨rp21p2⟩, · · · , ⟨rpα11 p
α2
2 ⟩} is a twin class of

size α1α2. Proceeding this way, Type-I vertices other than ⟨r⟩, can be par-

titioned into twin classes of size

Pn = {α1,α2, . . . ,αk,α1α2,α2α3, . . . ,α1α2 · · ·αk}.

Similarly for Γ(Dm), we get

Pm = {β1, β2, . . . , βk, β1β2, β2β3, . . . , β1β2 · · · βk}.
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As Γ(Dn) ∼= Γ(Dm), we have Pn = Pm. If αi = βσ(i) for some σ ∈ Sk,

we are done. If no αi is equal to any βj, then without loss of generality, let

α1 = min{α1,α2, . . . ,αk, β1, β2, . . . , βk}. Therefore, α1 < βi for all i. Thus

α1 ∈ Pn, but α1 ∈ Pm, as βi > α1. This contradicts the fact Pn = Pm. Thus

some αi’s are equal to some βj. By suitable renaming, let α1 = β1,α2 =

β2, . . . ,αi = βi and none of αi+1, . . . ,αk is not equal to any of βi+1, . . . , βk.

Therefore each of αi+1, . . . ,αk is product of atleast two βj’s. Similarly, each

of βi+1, . . . , βk is product of atleast two αj’s.

We remove all the terms involving α1,α2, . . . ,αi from Pn to get a new

set P ′
n. Similarly, we remove all the terms involving β1, β2, . . . , βi from Pm

to get a new set P ′
m. Hence we have P ′

n = P ′
m.

Let αi1αi2 · · ·αit be the smallest element of P ′
n. Then at least one of

αi1,αi2, . . . ,αit does not belong to {α1,α2, . . . ,αi}. Let αi1 /∈ {α1,α2, . . . ,αi}.
Then αi1 ∈ P ′

n and αi1 ≤ αi1αi2 · · ·αit. Thus αi1 is also smallest in P ′
n = P ′

m.

Therefore αi1 = βj1βj2 · · · βjt ∈ P ′
m. Arguing similarly, without loss of

generality, βj1 is the smallest element in P ′
m. Thus αi1 = βj1, a contradiction.

Hence, αi = βσ(i) for some σ ∈ Sk and the theorem follows. □

Theorem 3.2.10 Let n and m be two positive integers such that Γ(Dn) ∼=
Γ(Dm). Then n = m.

Proof : From Lemma 3.2.8, we get that n = pα1
1 pα2

2 · · · pαk

k and m =

qα1
1 qα2

2 · · · qαk

k . Thus, it suffices to show that pi = qi for all i. We con-

sider the case when both m and n are odd. The case when both m and n

are even can be handled similarly.
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Consider the maximum clique A = {⟨r⟩, ⟨rp1, s⟩, ⟨rp2, s⟩, . . . , ⟨rpk , s⟩} of

Γ∗(Dn) as defined in the proof of Theorem 3.2.8. Note that it contains

exactly one vertex of Type-I and k-vertices of Type-II. As Γ(Dn) ∼= Γ(Dm),

under any isomorphism, A is mapped to a maximum clique B of Γ∗(Dm).

Without loss of generality,

B = {⟨r⟩, ⟨rq1, ri1s⟩, ⟨rq2, ri2s⟩, . . . , ⟨rqk , riks⟩}.

Now, consider the number of Type-I and Type-II neighbours of Type-II

vertices in A. For example, ⟨rpi, s⟩ has (τ(n/piαi)− 1) many Type-I neigh-

bours and (σ(n/pi
αi) − 1) many Type-II neighbours in Γ∗(Dn). Similarly,

we can compute the number of Type-I and Type-II neighbours of Type-

II vertices in B. As Γ(Dn) ∼= Γ(Dm), the following two sets consisting of

ordered pairs are equal.

{(τ(n/p1α1), σ(n/p1
α1)), (τ(n/p2

α2), σ(n/p2
α2)), . . . , (τ(n/pk

αk), σ(n/pk
αk))}

= {(τ(m/q1
α1), σ(m/q1

α1)), (τ(m/q2
α2), σ(m/q2

α2)), . . . , (τ(m/qk
αk), σ(m/qk

αk))}

Again, as τ(m) = τ(n), σ(m) = σ(n) and τ, σ are multiplicative functions,

we have

{(τ(p1α1), σ(p1
α1)), (τ(p2

α2), σ(p2
α2)), . . . , (τ(pk

αk), σ(pk
αk))}

= {(τ(q1α1), σ(q1
α1)), (τ(q2

α2), σ(q2
α2)), . . . , (τ(qk

αk), σ(qk
αk))}
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As these two sets are equal, there exists i such that (τ(p1
α1), σ(p1

α1)) =

(τ(qi
αi), σ(qi

αi)), i.e., α1 = αi and hence σ(p1
α1) = σ(qi

α1), i.e., p1 = qi.

Similarly, it can be shown that set of prime factors of m and n are same

and as a result, m = n. □

Theorem 3.2.11 Let G be a finite solvable group such that Γ(G) ∼= Γ(D2α).

Then G ∼= D2α.

Proof : As Γ∗(D2α) has a unique universal vertex, namely ⟨r⟩ and all

other Type-I vertices are isolated, we get a subgroup H which is the unique

universal vertex in Γ∗(G).

Claim 1: H is a maximal subgroup G and H ◁G.

Proof of Claim 1: If there exists a proper subgroup X of G such that

H ⊊ X, then deg(H) ≤ deg(X) in Γ(G), a contradiction. Thus H is a

maximal subgroup of G. If H is not normal in G, there exists g ∈ G such

that H ′ = gHg−1 ̸= H. Note that K ∼ H if and only if gKg−1 ∼ gHg−1,

i.e., deg(H) = deg(H ′), a contradiction. Thus H ◁G.

From Claim 1, it follows that G/H is a prime order group, i.e., [G : H] =

p, for some prime p. Thus |G| = pam and |H| = pa−1m, where p ∤ m.

Claim 2: G is a group of prime power order.

Proof of Claim 2: Let q be a prime factor ofm andK be a Sylow q-subgroup

of G. If K ̸⊆ H, then KH = G, i.e.,

pam =
(qb)(pa−1m)

|H ∩K| =
(qb)(pa−1m)

qt
= qb−tpa−1m, i.e., qb−t = p, a contradiction.

84



Thus if q is a prime factor of m, then every Sylow q-subgroup K of G is

contained in H. Thus K corresponds to a Type-I vertex in Γ(D2α) and

hence, if K ̸= H, then K is an isolated vertex in Γ(D2α). However, as G is

solvable, K has a Hall complement L of order pam/qb in G, i.e., KL = G,

i.e., K ∼ L. Thus either m has no prime factor, i.e., m = 1 or K = H. If

m = 1, then G is p-group and the claim holds. If K = H, then |H| = qb,

i.e., a = 1 and |G| = pqb.

Again, note that Γ∗(D2α) has exactly two Type-II vertices of second

highest degree, namely ⟨r2, s⟩ and ⟨r2, rs⟩ and every other Type-II vertices is

adjacent to exactly one of ⟨r2, s⟩ and ⟨r2, rs⟩. Let K1, K2 be the two vertices

in Γ∗(G) corresponding to ⟨r2, s⟩ and ⟨r2, rs⟩ respectively. As H is the

universal vertex in Γ∗(G), we have H ∼ K1 and H ∼ K2, i.e., K1, K2 ̸⊆ H.

Thus |K1| = pqt1 and |K2| = pqt2. Again, as ⟨r2, s⟩ ∼ ⟨r2, rs⟩, we have

K1 ∼ K2, i.e., K1K2 = G, i.e.,

pqb =
pqt1 · pqt2
|K1 ∩K2|

, i.e., |K1 ∩K2| = pqt1+t2−b.

If p ̸= q, K1 ∩ K2 ̸⊆ H, i.e., H ∼ K1 ∩ K2 and K1 ∩ K2 corresponds to

a Type-II vertex. Hence, K1 ∩K2 must be adjacent to one of K1 and K2.

However, K1 ∩ K2 ⊆ K1, K2, this is a contradiction. Thus we must have

p = q and |G| = pb+1. Hence Claim 2 holds. As G is a group of prime-

power order, G is nilpotent and Γ∗(G) has a unique universal vertex. Thus

by Theorem 3.6 in [23], G must belong to one of the five families of groups,

namely 3, 4, 5, 6, 7. As Γ∗(Zpn−1 × Zp) and Γ∗(Mpn) has p many universal
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vertices, G is not isomorphic to Zpn−1 × Zp or Mpn. Again, as Γ∗(SD2n) a

unique vertex of second highest degree, G is not isomorphic to SD2n. If

G ∼= Q2n, then number of isolated vertices in Γ(G) is n− 2 and the second

highest degree is 2n−2. However, Γ(D2α) has α− 1 isolated vertices and its

second highest degree is 2α. This is a contradiction and hence G ≁= Q2n.

Hence G ∼= D2n−1. Finally, comparing the number of isolated vertices, we

get G ∼= D2α. □

3.3 Conclusion and Open Issues

In this chapter, we discussed various properties related to comaximal sub-

group graph of Zn and Dn. However, some of the isomorphism problems

are yet to be answered and can be interesting topics of further research.

• If G is a finite group such that Γ(G) ∼= Γ(Zn), what can we say about

G?

• For the same question pertaining to Dn, a partial answer is provided

in Theorem 3.2.11. Although the general case is still open.
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