# Chapter 3

# Co-Maximal Subgroup Graph of $\mathbb{Z}_n$ and $D_n$

In this chapter, we study various properties of co-maximal subgroup graph of  $\mathbb{Z}_n$  and  $D_n$ .

## 3.1 Co-Maximal Subgroup Graph of $\mathbb{Z}_n$

We start with some basic properties of  $\Gamma(\mathbb{Z}_n)$  and  $\Gamma^*(\mathbb{Z}_n)$ . As for any cyclic p-group G,  $\Gamma(\mathbb{Z}_n)$  is empty, throughout the paper, we consider  $\Gamma(\mathbb{Z}_n)$  where n is not a prime power.

#### **3.1.1** Basic Properties of $\Gamma(\mathbb{Z}_n)$

In this section, we study some basic properties of  $\Gamma(\mathbb{Z}_n)$  and  $\Gamma^*(\mathbb{Z}_n)$  like connectedness, degree, diameter etc.

**Lemma 3.1.1** Let  $H = \langle x \rangle$  and  $K = \langle y \rangle$  be two subgroups of  $\mathbb{Z}_n$  where x, y divide n. Then  $H \sim K$  in  $\Gamma(\mathbb{Z}_n)$  if and only if gcd(x, y) = 1.

**Proof**: It follows from Bezout's theorem and the observation that  $HK = \{sx + ty : s, t \in \mathbb{Z}\}$ .

**Theorem 3.1.1** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \geq 1$ . Let  $H = \langle p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} \rangle$  be a subgroup of  $\mathbb{Z}_n$ , where  $\beta_i \leq \alpha_i$ . Then degree of H in  $\Gamma(\mathbb{Z}_n)$  is

$$deg(H) = \begin{cases} 0, & \text{if } \beta_i \neq 0, \forall i \\\\ \prod_{j:\beta_j=0} (\alpha_j + 1) - 1, & \text{otherwise.} \end{cases}$$

**Proof**: Follows from Lemma 3.1.1.

**Corollary 3.1.2** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \ge 1$ . Then  $\Gamma^*(\mathbb{Z}_n)$  is Eulerian if and only if n is a perfect square.

**Proof**: If *n* is a perfect square, then each  $\alpha_i$  is even and by Theorem 3.1.1, degree of every vertex of  $\Gamma^*(\mathbb{Z}_n)$  is even and hence  $\Gamma^*(\mathbb{Z}_n)$  is Eulerian. If *n* is not a perfect square, then there exists *i* such that  $\alpha_i$  is odd. Let  $H = \langle p_1^{\alpha_1} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k} \rangle$ . Then by Theorem 3.1.1,  $deg(H) = \alpha_i$ , which is odd. Thus  $\Gamma^*(\mathbb{Z}_n)$  is not Eulerian.

**Theorem 3.1.2** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \ge 1$ . Then  $\Gamma(\mathbb{Z}_n)$  has exactly  $\alpha_1 \alpha_2 \cdots \alpha_k - 1$  isolated vertices.

,

**Proof**: Since G is a cyclic non p-group of order  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ . Then,  $G \cong \mathbb{Z}_n$ . By Lemma 3.1.1,  $H = \langle p_1 p_2 \cdots p_k \rangle$  is an isolated vertex in  $\Gamma(G)$ . Similarly, if x is a multiple of  $p_1 p_2 \cdots p_k$  which divides n, then  $\langle x \rangle$  is an isolated vertex in  $\Gamma(G)$ .

Let  $A = \langle a \rangle$  with a|n be a subgroup of G such that A is an isolated vertex in  $\Gamma(G)$ . As G has a unique subgroup of order corresponding to each factor of n and for any non-trivial proper subgroup H of G, we have  $A \not\sim H$ in  $\Gamma(G)$ , we have  $gcd(a,m) \neq 1$  for any factor m of |G| = n. Thus  $p_i|a$  for all i, i.e., a is a multiple of  $p_1p_2\cdots p_k$  which divides n.

Hence the number of isolated vertices in  $\Gamma(G)$  is  $\alpha_1 \alpha_2 \cdots \alpha_k - 1$ .

**Corollary 3.1.3**  $\Gamma(\mathbb{Z}_n)$  is connected if and only if n is square-free.

**Proof**: Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ . The corollary follows from the fact that  $\alpha_1 \alpha_2 \cdots \alpha_k - 1 = 0$  if and only if *n* is square-free.

**Theorem 3.1.3** Let G be a cyclic non p-group of order  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \ge 1$ . Then  $diam(\Gamma^*(G)) = \begin{cases} 2, & \text{if } k = 2\\ 3, & \text{if } k \ge 3 \end{cases}$ 

**Proof**: It is clear that the number of maximal subgroups of G is k. If k = 2, then the vertices of  $\Gamma^*(G)$  are  $\langle p_1 \rangle, \langle p_1^2 \rangle, \ldots, \langle p_1^{\alpha_1} \rangle, \langle p_2 \rangle, \langle p_2^2 \rangle, \ldots, \langle p_2^{\alpha_2} \rangle$ and any two non-adjacent vertices always have a common neighbour either  $\langle p_1 \rangle$  or  $\langle p_2 \rangle$ . Hence its diameter is 2.

If  $k \geq 3$ , then  $\langle p_1 p_2 \cdots p_{k-1} \rangle$  and  $\langle p_2 p_3 \cdots p_k \rangle$  are non-adjacent vertices in  $\Gamma^*(G)$  and they do not have any common neighbour. Thus their distance is greater than 2. Now, as  $\mathbb{Z}_n$  is nilpotent, we have  $diam(\Gamma^*(G)) = 3$ .  $\Box$  **Theorem 3.1.4** Let G be a cyclic non p-group of order  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \ge 1$ . Then  $\Gamma(G)$  has pendant vertices if and only if  $\alpha_i = 1$  for some i.

**Proof**: Let G be a cyclic group of order  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where at least one  $\alpha_i = 1$ , say  $\alpha_1 = 1$ , i.e.,  $n = p_1 p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ . Then  $\langle p_2 p_3 \cdots p_k \rangle$  is a pendant vertex in  $\Gamma(G)$ , which is adjacent to  $\langle p_1 \rangle$ .

Conversely, let G be a cyclic group of order  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  such that  $\Gamma(G)$  has at least one pendant vertex. If possible, let  $\alpha_i \geq 2$  for all i. Let  $H = \langle m \rangle$  be a pendant vertex in  $\Gamma(G)$  where m|n. If  $p_i|m$  for all i, then H is an isolated vertex, a contradiction. Thus, m misses at least one prime factor. Let  $m = p_2^{\beta_2} \cdots p_k^{\beta_k}$  where  $0 \leq \beta_i \leq \alpha_i$ . But this implies that H is adjacent to the vertices  $\langle p_1 \rangle, \langle p_1^2 \rangle, \ldots, \langle p_1^{\alpha_1} \rangle$ . As  $\alpha_1 \geq 2$ , H can not be a pendant vertex. Thus, at least some  $\alpha_i$  must be 1.

#### **3.1.2** Hamiltonicity, Perfectness and Dominating Sets of $\Gamma(\mathbb{Z}_n)$

In this section, we characterize the values of n for which  $\Gamma^*(\mathbb{Z}_n)$  is perfect and hamiltonian. We also find the domination number of  $\Gamma^*(\mathbb{Z}_n)$ .

**Theorem 3.1.5** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \ge 1$ . Then  $\Gamma^*(\mathbb{Z}_n)$  is Hamiltonian if and only if k = 2 and  $\alpha_1 = \alpha_2$ .

**Proof**: If k = 2 and  $\alpha_1 = \alpha_2$ , then  $n = p_1^{\alpha_1} p_2^{\alpha_1}$ . We now explicitly construct the hamiltonian circuit in  $\Gamma^*(\mathbb{Z}_n)$ :

$$\langle p_1 \rangle \sim \langle p_2 \rangle \sim \langle p_1^2 \rangle \sim \langle p_2^2 \rangle \sim \langle p_1^3 \rangle \sim \langle p_2^3 \rangle \sim \cdots \sim \langle p_1^{\alpha_1} \rangle \sim \langle p_2^{\alpha_1} \rangle \sim \langle p_1 \rangle.$$

Conversely, let  $\Gamma^*(\mathbb{Z}_n)$  be Hamiltonian. If possible, let  $k \geq 3$ . If  $\alpha_i = 1$  for some *i*, then the graph has a vertex of degree 1 and hence it is not hamiltonian. Thus, we assume that  $\alpha_i \geq 2$  for all *i*. Without loss of generality, let  $\alpha_1 = \min\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ . Now, the vertices of the form  $\langle p_2^{\alpha'_2} p_3^{\alpha'_3} \cdots p_k^{\alpha'_k} \rangle$  are adjacent only to the vertices of the form  $\langle p_1^{\alpha'_1} \rangle$ , where  $1 \leq \alpha'_i \leq \alpha_i$ , i.e., we have  $\alpha_2 \alpha_3 \cdots \alpha_k$  vertices of degree  $\alpha_1$ . As two vertices of the form  $\langle p_2^{\alpha'_2} p_3^{\alpha'_3} \cdots p_k^{\alpha'_k} \rangle$  are not adjacent, to complete a hamiltonian cycle, we need at least  $\alpha_2 \alpha_3 \cdots \alpha_k$  different vertices between the vertices of the form  $\langle p_2^{\alpha'_2} p_3^{\alpha'_3} \cdots p_k^{\alpha'_k} \rangle$ . But, as  $k \geq 3$ , we have  $\alpha_2 \alpha_3 \cdots \alpha_k > \alpha_1$ . This leads to a contradiction. Thus k = 2 and  $n = p_1^{\alpha_1} p_2^{\alpha_2}$ .

As earlier, we can assume that  $\alpha_1, \alpha_2 \geq 2$ . Let, if possible,  $\alpha_1 \neq \alpha_2$ . Without loss of generality, let  $2 \leq \alpha_1 < \alpha_2$ . Now, on any hamiltonian circuit in  $\Gamma^*(\mathbb{Z}_n)$ , between any two vertices of the form  $\langle p_1{}^i \rangle$  and  $\langle p_1{}^j \rangle$  we have a vertex of the form  $\langle p_2{}^t \rangle$  and between any two vertices of the form  $\langle p_2{}^i \rangle$  and  $\langle p_2{}^j \rangle$  we have a vertex of the form  $\langle p_1{}^t \rangle$ . Thus any Hamiltonian circuit should consist of an alternating run of vertices of the form  $\langle p_1{}^i \rangle$  and  $\langle p_2{}^j \rangle$  than that of the form  $\langle p_1{}^i \rangle$ , a contradiction. Thus  $\alpha_1 = \alpha_2$ .

**Theorem 3.1.6** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes and  $\alpha_i \ge 1$ . Then  $\Gamma^*(\mathbb{Z}_n)$  is perfect if and only if  $k \le 4$ . **Proof**: If  $k \ge 5$ , then there exists an induced 5-cycle in  $\Gamma^*(\mathbb{Z}_n)$  as shown in Figure 3.1.2. Thus, in this case,  $\Gamma^*(\mathbb{Z}_n)$  is not perfect. Let  $k \le 4$ , i.e., n has at most 4 distinct prime factors  $p_1, p_2, p_3, p_4$ . Let, if possible,  $\Gamma^*(\mathbb{Z}_n)$  admits an induced odd cycle of length  $t \ge 5$ , say  $\langle h_1 \rangle \sim$  $\langle h_2 \rangle \sim \cdots \sim \langle h_t \rangle \sim \langle h_1 \rangle$ . From the non-adjacency relations, we get  $gcd(h_1, h_3), gcd(h_1, h_4), gcd(h_2, h_4), gcd(h_2, h_5), gcd(h_3, h_t) \neq 1$ .

Let  $p_1 \mid gcd(h_1, h_3)$ . Then  $p_1 \mid h_1$  and  $p_1 \mid h_3$ . Again, as  $\langle h_t \rangle \sim \langle h_1 \rangle$ , we have  $gcd(h_1, h_t) = 1$ , i.e.,  $p_1 \nmid h_t$ .

Similarly, as  $\langle h_3 \rangle \sim \langle h_4 \rangle$ , we have  $p_1 \nmid h_4$ , i.e.,  $p_1 \nmid gcd(h_1, h_4)$ . Let  $p_2 \mid gcd(h_1, h_4)$ . Then  $p_2 \mid h_1$  and  $p_2 \mid h_4$ . Now as  $\langle h_3 \rangle \sim \langle h_4 \rangle$ , we have  $p_2 \nmid h_3$ .

Again, as  $p_1, p_2 \mid h_1$  and  $\langle h_1 \rangle \sim \langle h_2 \rangle$ , we have  $p_1, p_2 \nmid h_2$ , i.e.,  $p_1, p_2 \nmid gcd(h_2, h_4)$ . Let  $p_3 \mid gcd(h_2, h_4)$ . Then  $p_3 \mid h_2$  and  $p_3 \mid h_4$ . As  $\langle h_2 \rangle \sim \langle h_3 \rangle$ , we have  $p_3 \nmid h_3$ .

Thus  $p_1, p_2, p_3 \nmid gcd(h_3, h_t)$ . Let  $p_4 \mid gcd(h_3, h_t)$ . Then  $p_4 \mid h_3$  and  $p_4 \mid h_t$ . As  $\langle h_2 \rangle \sim \langle h_3 \rangle$ , we have  $p_4 \nmid h_2$ . Again, as  $\langle h_4 \rangle \sim \langle h_5 \rangle$ , we have  $p_3 \nmid h_5$ .

From the above situation, we get  $p_1, p_2, p_3, p_4 \nmid gcd(h_2, h_5)$ . This is a contradiction, as  $gcd(h_2, h_5) \neq 1$  and  $k \leq 4$ . Thus  $\Gamma^*(\mathbb{Z}_n)$  does not admit any induced odd cycle of length  $t \geq 5$ .

Let, if possible,  $\Gamma^*(\mathbb{Z}_n)^c$  admits an induced odd cycle of length  $t \geq 5$ , say  $\langle h_1 \rangle \sim \langle h_2 \rangle \sim \cdots \sim \langle h_t \rangle \sim \langle h_1 \rangle$ . Note that in the complement graph, two vertices  $\langle h_i \rangle$  and  $\langle h_j \rangle$  are non-adjacent/adjacent according as  $gcd(h_i, h_j)$  is equal/not equal to 1 respectively.

As  $\langle h_1 \rangle \sim \langle h_2 \rangle$ , we have  $gcd(h_1, h_2) \neq 1$ . Let  $p_1 \mid gcd(h_1, h_2)$ . Then  $p_1 \mid h_1$  and  $p_1 \mid h_2$ . As  $gcd(h_1, h_3) = 1$ , we have  $p_1 \nmid h_3$ , i.e.,  $p_1 \nmid gcd(h_2, h_3)$ . Similarly, we can conclude that  $p_1$  does not divide any one of  $gcd(h_3, h_4), gcd(h_4, h_5), gcd(h_1, h_t)$ .

Let  $p_2 \mid gcd(h_2, h_3)$ . Then  $p_2 \mid h_2$  and  $p_2 \mid h_3$ . As  $gcd(h_2, h_4) = 1$ , we have  $p_2 \nmid h_4$ , i.e.,  $p_2$  does not divide  $gcd(h_3, h_4)$  and  $gcd(h_4, h_5)$ . Similarly, as  $gcd(h_2, h_t) = 1$ , we have  $p_2 \nmid h_t$ , i.e.,  $p_2 \nmid gcd(h_1, h_t)$ .

As  $p_1, p_2 \nmid gcd(h_3, h_4)$ , let  $p_3 \mid gcd(h_3, h_4)$ . Then  $p_3 \mid h_3$  and  $p_3 \mid h_4$ . As  $gcd(h_1, h_3) = 1$ , we have  $p_3 \nmid h_1$ , i.e.,  $p_3 \nmid gcd(h_1, h_t)$ . Similarly, as  $gcd(h_3, h_5) = 1$ , we have  $p_3 \nmid h_5$ , i.e.,  $p_3 \nmid gcd(h_4, h_5)$ .

As  $p_1, p_2, p_3 \nmid gcd(h_4, h_5)$ , let  $p_4 \mid gcd(h_4, h_5)$ . Then  $p_4 \mid h_4$  and  $p_4 \mid h_5$ . As  $gcd(h_1, h_4) = 1$ , we have  $p_4 \nmid h_1$ , i.e.,  $p_4 \nmid gcd(h_1, h_t)$ .

Thus  $p_1, p_2, p_3, p_4 \nmid gcd(h_1, h_t)$ . But this is a contradiction, as  $gcd(h_1, h_t) > 1$  and n has at most four distinct prime factors. Thus  $\Gamma^*(\mathbb{Z}_n)^c$  does not admit an induced odd cycle of length  $t \geq 5$ .

Hence, by strong perfect graph theorem, the theorem follows.



Figure 3.1: Induced 5-cycle in  $\Gamma^*(\mathbb{Z}_n)$ , for  $k \geq 5$ 

**Theorem 3.1.7** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct primes,

 $k \geq 2$  and  $\alpha_i \geq 1$ . Then

$$\gamma(\Gamma^*(\mathbb{Z}_n)) = \begin{cases} 1, & \text{if } n = p_1^{\alpha_1} p_2.\\ k, & \text{otherwise.} \end{cases}$$

**Proof**: Clearly  $\{\langle p_1 \rangle, \langle p_2 \rangle, \dots, \langle p_k \rangle\}$  is a dominating set for  $\Gamma^*(\mathbb{Z}_n)$  of size k. Thus  $\gamma(\Gamma^*(\mathbb{Z}_n)) \leq k$ .

Let  $S = \{\langle x_1 \rangle, \langle x_2 \rangle, \dots, \langle x_{k-1} \rangle\}$  be a dominating set of  $\Gamma^*(\mathbb{Z}_n)$  of size k-1. Let  $m = p_1 p_2 p_3 \cdots p_k$ . Out of the k vertices  $\langle m/p_1 \rangle, \langle m/p_2 \rangle, \dots, \langle m/p_k \rangle$ , at least one does not belong to S. Without loss of generality, let  $\langle m/p_1 \rangle \notin S$  and  $\langle m/p_1 \rangle \sim \langle x_1 \rangle$ . Thus, by Lemma 3.1.1,  $x_1 = p_1^{\alpha'_1}$ , where  $1 \leq \alpha'_1 \leq \alpha_1$ . Thus  $\langle x_1 \rangle$  is not adjacent to any of the k-1 vertices  $\langle m/p_2 \rangle, \langle m/p_3 \rangle, \dots, \langle m/p_k \rangle$ . Again, by similar argument, not all of these k-1 vertices belong to S. Without loss of generality, let  $\langle m/p_2 \rangle \notin S$  and  $\langle m/p_2 \rangle \sim \langle x_2 \rangle$ . Proceeding similarly, we get  $x_2 = p_2^{\alpha'_2}$ , where  $1 \leq \alpha'_2 \leq \alpha_2$ . Thus  $\langle x_1 \rangle$  and  $\langle x_2 \rangle$  are not adjacent to any of the k-2 vertices  $\langle m/p_3 \rangle, \dots, \langle m/p_k \rangle$ . Continuing in this way, we get  $x_i = p_i^{\alpha'_i}$  for  $i = 1, 2, \dots, k-1$ . However, in that case,  $\langle m/p_k \rangle$  neither belong to S nor adjacent to any element of S, a contradiction. Hence  $\gamma(\Gamma^*(\mathbb{Z}_n)) = k$ .

Note that the proof does not work if k = 2 and exactly one of the two powers is 1. Because in that case, one of  $\langle m/p_1 \rangle$  and  $\langle m/p_2 \rangle$  is not a vertex of  $\Gamma^*(\mathbb{Z}_n)$ , i.e., an isolated vertex of  $\Gamma(\mathbb{Z}_n)$ . If k = 2 and  $n = p_1^{\alpha_1} p_2$ , then  $\langle p_2 \rangle$  dominates  $\Gamma^*(\mathbb{Z}_n)$ .

#### 3.1.3 Isomorphisms

In this section, we discuss the conditions under which co-maximal subgroup graphs defined over different cyclic groups are isomorphic. For that, we start with the following definition.

**Definition 3.1.1** Two positive integers n and m are said to be of same prime-factorization type if  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  and  $m = q_1^{\beta_1} q_2^{\beta_2} \cdots q_k^{\beta_k}$ where  $p_i, q_i$ 's are primes and there exists  $\sigma \in S_k$  such that  $\alpha_i = \beta_{\sigma(i)}$  for i = 1, 2, ..., k.

**Theorem 3.1.8** Let n and m be two integers. Then  $\Gamma(\mathbb{Z}_n) \cong \Gamma(\mathbb{Z}_m)$  if and only if m and n are of same prime-factorization type.

**Proof**: If m and n are of same prime-factorization type, then the result is obvious. Let  $\Gamma(\mathbb{Z}_n) \cong \Gamma(\mathbb{Z}_m)$ , then as their clique numbers are equal, both mand n have same number of distinct prime factors. Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ and  $m = q_1^{\beta_1} q_2^{\beta_2} \cdots q_k^{\beta_k}$ . Also as they have same number of isolated vertices, we have  $\alpha_1 \cdot \alpha_2 \cdots \alpha_k = \beta_1 \cdot \beta_2 \cdots \beta_k$ .

Without loss of generality, let  $\alpha_1 = \min\{\alpha_1, \alpha_2, \ldots, \alpha_k, \beta_1, \beta_2, \ldots, \beta_k\}$ . If possible, let  $\alpha_1 \notin \{\beta_1, \beta_2, \ldots, \beta_k\}$ . Now, note that any vertex of the form  $\langle p_2^{\alpha'_2} p_3^{\alpha'_3} \cdots p_k^{\alpha'_k} \rangle$   $(1 \leq \alpha'_i \leq \alpha_i)$  in  $\Gamma(\mathbb{Z}_n)$  is adjacent to only  $\alpha_1$  vertices, namely  $\langle p_1 \rangle, \langle p_1^2 \rangle, \ldots, \langle p_1^{\alpha_1} \rangle$ . Thus  $\Gamma(\mathbb{Z}_n)$  has  $\alpha_2 \alpha_3 \cdots \alpha_k$  vertices of degree  $\alpha_1$ . As  $\alpha_1 \leq \min\{\beta_1, \beta_2, \ldots, \beta_k\}$  and  $\alpha_1 \notin \{\beta_1, \beta_2, \ldots, \beta_k\}$ , from Theorem 3.1.1, it follows that  $\Gamma(\mathbb{Z}_m)$  has no vertex of degree  $\alpha_1$ , a contradiction. Thus  $\alpha_1 = \beta_i$  for some *i*. By suitable renaming, let  $\alpha_1 = \beta_1$ . Again, without loss of generality, let  $\alpha_2 = \min\{\alpha_2, \ldots, \alpha_k, \beta_2, \ldots, \beta_k\}$ . If possible, let  $\alpha_2 \notin \{\beta_2, \ldots, \beta_k\}$ . If  $\alpha_2 \neq \beta_1$ , then by similar argument,  $\Gamma(\mathbb{Z}_m)$  has no vertex of degree  $\alpha_2$ , a contradiction. Thus, we assume that  $\alpha_2 = \alpha_1 = \alpha_2$ . Then  $\Gamma(\mathbb{Z}_n)$  has  $\alpha_2\alpha_3\cdots\alpha_k + \alpha_1\alpha_3\cdots\alpha_k$  of degree  $\alpha_1$  and  $\Gamma(\mathbb{Z}_m)$  has  $\beta_2\beta_3\cdots\beta_k$  of degree  $\alpha_1$ . As  $\Gamma(\mathbb{Z}_n) \cong \Gamma(\mathbb{Z}_m)$ , we have

$$\alpha_2\alpha_3\cdots\alpha_k+\alpha_1\alpha_3\cdots\alpha_k=\beta_2\beta_3\cdots\beta_k,$$

i.e., 
$$\alpha_3 \cdots \alpha_k (\alpha_1 + \alpha_2) = \frac{\alpha_1 \cdot \alpha_2 \cdots \alpha_k}{\beta_1}$$
 (as  $\alpha_1 \cdot \alpha_2 \cdots \alpha_k = \beta_1 \cdot \beta_2 \cdots \beta_k$ )

i.e.,  $\beta_1(\alpha_1 + \alpha_2) = \alpha_1 \alpha_2$ , i.e.,  $2\alpha_1^2 = \alpha_1^2$ , a contradiction.

Thus  $\alpha_2 = \beta_i$  for some  $i \in \{2, 3, ..., k\}$ . By suitable renaming, let  $\alpha_2 = \beta_2$ .

Proceeding this way, suppose in the (l-1)-th step, we get  $\alpha_i = \beta_i$  for  $i = 1, 2, \ldots, l-1$ . Without loss of generality, let  $\alpha_l = \min\{\alpha_l, \ldots, \alpha_k, \beta_l, \ldots, \beta_k\}$ . If possible, let  $\alpha_l \notin \{\beta_l, \ldots, \beta_k\}$ . If  $\alpha_l \notin \{\beta_1, \beta_2, \ldots, \beta_{l-1}\}$ , then by similar argument,  $\Gamma(\mathbb{Z}_m)$  has no vertex of degree  $\alpha_l$ , a contradiction. Thus, we assume that  $\alpha_l \in \{\beta_1, \beta_2, \ldots, \beta_{l-1}\}$ . Let  $\alpha_l = \beta_p = \beta_{p+1} = \cdots = \beta_{l-1} = \alpha_p = \alpha_{p+1} = \cdots = \alpha_{l-1}$  for some  $1 \le p \le l-1$ .

Therefore,  $\Gamma(\mathbb{Z}_n)$  has

$$(\alpha_1 \alpha_2 \cdots \alpha_{p-1} \alpha_{p+1} \cdots \alpha_k) + (\alpha_1 \cdots \alpha_p \alpha_{p+1} \cdots \alpha_k) + \dots + (\alpha_1 \cdots \alpha_{l-1} \alpha_{l+1} \cdots \alpha_k)$$
$$= \alpha_1 \cdots \alpha_k \left( \frac{1}{\alpha_p} + \frac{1}{\alpha_{p+1}} + \dots + \frac{1}{\alpha_l} \right) \text{ vertices of degree } \alpha_l.$$

Similarly,  $\Gamma(\mathbb{Z}_m)$  has

$$\beta_1 \cdots \beta_k \left( \frac{1}{\beta_p} + \frac{1}{\beta_{p+1}} + \cdots + \frac{1}{\beta_{l-1}} \right)$$
 vertices of degree  $\alpha_l$ .

Now, as  $\Gamma(\mathbb{Z}_n) \cong \Gamma(\mathbb{Z}_m)$ , we have

$$\alpha_1 \cdots \alpha_k \left( \frac{1}{\alpha_p} + \frac{1}{\alpha_{p+1}} + \dots + \frac{1}{\alpha_l} \right) = \beta_1 \cdots \beta_k \left( \frac{1}{\beta_p} + \frac{1}{\beta_{p+1}} + \dots + \frac{1}{\beta_{l-1}} \right)$$
  
i.e.,  $\left( \frac{1}{\alpha_p} + \frac{1}{\alpha_{p+1}} + \dots + \frac{1}{\alpha_l} \right) = \left( \frac{1}{\alpha_p} + \frac{1}{\alpha_{p+1}} + \dots + \frac{1}{\alpha_{l-1}} \right) \Rightarrow \left( \frac{l-p+1}{\alpha_l} \right) = \left( \frac{l-p}{\alpha_l} + \frac{1}{\alpha_l} \right)$   
a contradiction. Thus, by suitable renaming, we get  $\alpha_l = \beta_l$ , and hence by

induction, the theorem follows.

## **3.2** Co-Maximal Subgroup Graph of $D_n$

In this section, we study the comaximal subgroup graph on finite dihedral groups, denoted by  $\Gamma(D_n)$ .

## **3.2.1** Structural Properties of $\Gamma(D_n)$ and $\Gamma^*(D_n)$

We characterize various structural properties of  $\Gamma(D_n)$  and  $\Gamma^*(D_n)$  of like order, maximum and minimum degree, girth, diameter and when they are Eulerian. We start by describing the complete list of subgroups of  $D_n$ , which constitute the vertex set of the graph to be studied.

The dihedral group  $D_n$  has two generators r and s with orders n and 2 such that  $srs^{-1} = r^{-1}$ .  $D_n = \langle r, s : r^n = s^2 = 1, srs = r^{n-1} \rangle$  consists of 2n elements. We recall a result on the complete list of subgroups of  $D_n$ . For a proof of this listing, please refer to [22].

**Proposition 3.2.1** Every subgroup of  $D_n$  is either cyclic or dihedral. A complete listing of the subgroups is as follows:

- 1.  $\langle r^d \rangle$ , where d|n, with index 2d,
- 2.  $\langle r^d, r^i s \rangle$ , where d|n and  $0 \le i \le d-1$ , with index d.

Moreover, every subgroup of  $D_n$  occurs exactly once in this listing.

**Proposition 3.2.2**  $\Gamma(D_n)$  has  $\sigma(n) + \tau(n) - 2$  vertices.

**Proof** :  $\Gamma(D_n)$  contains all subgroups of the form  $\langle r^d \rangle$ , where d|n and  $d \neq n$ . We call this vertices of Type-I, and so number of Type-I vertices is  $\tau(n) - 1$ . Similarly,  $\Gamma(D_n)$  contains all subgroups of the form  $\langle r^d, r^i s \rangle$ , where d|n and  $0 \leq i \leq d-1$  except d = 1. We call this vertices of Type-II, and so number of Type-II vertices is  $\sigma(n) - 1$ .

Now, we investigate the adjacency between vertices of  $\Gamma(D_n)$ . It is clear that no two vertices of Type-I are adjacent. Thus, any edge of  $\Gamma(D_n)$  occurs either between two vertices of Type-II or one of Type-I and one of Type-II. The edges in  $\Gamma(D_n)$  are completely classified in the next theorem.

**Theorem 3.2.1** The following are the edges of  $\Gamma(D_n)$ :

• A vertex  $\langle r^{d_1} \rangle$  of Type-I is adjacent to a vertex  $\langle r^{d_2}, r^i s \rangle$  of Type-II if and only if  $gcd(d_1, d_2) = 1$ .

- Two vertices \$\langle r^{d\_1}, r^i s \rangle\$ and \$\langle r^{d\_2}, r^j s \rangle\$ of Type-II are adjacent if and only if one of the two conditions hold:
  - 1.  $gcd(d_1, d_2) = 1$ .
  - 2.  $gcd(d_1, d_2) = 2$  and i j is odd.

#### Proof :

- Let  $H = \langle r^{d_1} \rangle$  and  $K = \langle r^{d_2}, r^i s \rangle$ . We start by noting that  $HK = D_n$ if and only if  $r \in HK$ . If  $gcd(d_1, d_2) = 1$ , then there exist integers u, vsuch that  $ud_1 + vd_2 = 1$ . Thus,  $r = (r^{d_1})^u \cdot (r^{d_2})^v \in HK$ . Conversely, as  $r \notin H, K$ , but  $r \in HK$ , we must get r as product of powers of  $r^{d_1}$ and  $r^{d_2}$ , i.e.,  $gcd(d_1, d_2) = 1$ .
- Let  $H = \langle r^{d_1}, r^i s \rangle$ ,  $K = \langle r^{d_2}, r^j s \rangle$  and  $H \sim K$ . Then  $HK = D_n$ . If  $d = gcd(d_1, d_2)$ , then there exist integers x, y such that  $d_1x + d_2y = d$ , i.e.,  $r^d = (r^{d_1})^x (r^{d_2})^y \in HK = D_n$ . Thus  $\langle r^d \rangle \subseteq HK$ . Note that  $r^d$  is the smallest power of r that can expressed as product of powers of  $r^{d_1}$  and  $r^{d_2}$ . If  $d \geq 3$ , then r and  $r^2$  must be expressible as products of powers of  $r^{d_1}, r^i s, r^{d_2}$  and  $r^j s$ , i.e., there exist integers  $x_1, x_2, y_1, y_2$  such that

$$d_1x_1 + d_2x_2 + (i-j) \equiv 1 \pmod{n}$$
 and  $d_1y_1 + d_2y_2 + (i-j) \equiv 2 \pmod{n}$ .

Subtracting, we get  $d_1u + d_2v \equiv 1 \pmod{n}$ , i.e., d divides  $d_1u + d_2v - 1$ , i.e., d|1, a contradiction. Thus d = 1 or 2. If d = 1, we are done. Suppose d = 2 and i-j is even. Note that d = 2 implies n is even. Now, as  $r \in HK$ , there exist integers x and y such that  $d_1x + d_2y + (i-j) \equiv 1 \pmod{n}$ . But,  $d_1x + d_2y + (i-j)$  is even and it can not be congruent to 1 modulo an even number n. Thus i-j must be odd.

Conversely, let one of the conditions hold. If d = 1, then any integer can be expressed as integer linear combination of  $d_1$  and  $d_2$ . Thus for any integer l, we have  $r^l, r^l s \in HK$ , i.e.,  $HK = D_n$ . If d = 2 and i - j is odd, then n is even. As d = 2,  $r^2$  and all even powers of r can expressed as product of powers of  $r^{d_1}$  and  $r^{d_2}$  and they belong to HK. For odd powers of r to be in HK, we must have integers x, y such that

$$r^{d_1x+d_2y+(i-j)} = r^{2t+1}$$
, i.e.,  $d_1x + d_2y + (i-j) \equiv 2t+1 \pmod{n}$ 

$$2u = 2t + 1 + j - i \pmod{n}$$

Note that as  $gcd(d_1, d_2) = d = 2$ , for any integer u, we can find x and y such that  $d_1x + d_2y = 2u$ . Also, 2t + 1 + j - i is even. Thus, we have

$$u = \frac{2t+1+j-i}{2} \pmod{n}$$

Hence for all values of t, u has a solution and all odd powers of r lies in HK, i.e.,  $\langle r \rangle \subseteq HK$ .

Again, note that  $r^{d_1x+d_2y+i}s, r^{d_1x+d_2y+j}s \in HK$  for all values of x, y, i.e.,  $r^{2l+i}s, r^{2l+j}s \in HK$  for all value of l. As i - j is odd, i and j has different parity, and hence by varying l suitably, all the elements of the form  $r^k s \in HK$ . Thus  $HK = D_n$ , i.e.,  $H \sim K$ .

In the next few theorems, we find the maximum and minimum degree of  $\Gamma(D_n)$ , and its number of isolated and pendant vertices.

**Theorem 3.2.2** The maximum degree of  $\Gamma(D_n)$  is  $\sigma(n) - 1$  and is attained by  $\langle r \rangle$ .

**Proof :** Among Type-I vertices,  $\langle r \rangle$  has the maximum degree and its degree is

$$\left(\sum_{d\mid n, d\neq 1} d\right) - 1 = \sigma(n) - 1.$$

We claim that the degree of any Type-II vertex is less than  $\sigma(n) - 1$ .

**Case 1:** (*n* is odd, say  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are odd primes). Let  $H = \langle r^d, r^i s \rangle$  be a Type-II vertex with  $d | n, d \neq 1$ . Without loss of generality, let  $p_1$  be a prime divisor of d. Set  $K = \langle r^d, s \rangle$  and  $L = \langle r^{p_1}, s \rangle$ . Clearly  $K \subseteq L$ . As n is odd, d is also odd. Thus we have

set of neighbours of H = set of neighbours of  $K \subseteq$  set of neighbours of L.

Thus  $deg(H) = deg(K) \le deg(L)$ . Consider the following two set of vertices

$$A = \{ \langle r^{d_1}, s \rangle : p_1 | d_1, d_1 | n \} \text{ and } B = \{ \langle r^{d_1} \rangle : p_1 \nmid d_1 \}.$$

It is easy to check that all vertices in A are non-adjacent with L and B is the exactly the set of vertices of Type-I which are adjacent to L. Note that  $|A| = \alpha_1(\alpha_2 + 1) \cdots (\alpha_k + 1)$  and  $|B| = (\alpha_2 + 1) \cdots (\alpha_k + 1)$ . As there are total  $(\sigma(n) - 1)$  many Type-II vertices and  $|A| \ge |B|$ , we have

$$deg(H) \le deg(L) \le (\sigma(n) - 2) - |A| + |B| \le \sigma(n) - 2 < \sigma(n) - 1.$$

**Case 2:** (*n* is even, say  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_1 = 2$  and other  $p_i$ 's are odd primes). Let  $H = \langle r^d, r^i s \rangle$  be a Type-II vertex with  $d|n, d \neq 1$  and  $p_j$  be a prime divisor of *n*. According as *i* is even or odd, set  $K = \langle r^d, s \rangle$  or  $\langle r^d, rs \rangle$  respectively, and  $L = \langle r^{p_j}, s \rangle$  or  $\langle r^{p_j}, rs \rangle$ , respectively. As in Case 1, we have  $deg(H) = deg(K) \leq deg(L)$ . Again, as in Case 1, construct the sets *A* and *B*. The rest follows similarly and  $deg(H) < \sigma(n) - 1$ . Thus the theorem follows.

**Theorem 3.2.3** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ . The number of isolated vertices in  $\Gamma(D_n)$  is  $\alpha_1 \alpha_2 \cdots \alpha_k - 1$ . Moreover,  $\Gamma(D_n)$  is connected if and only if n is square-free.

**Proof**: Note that Type-II vertices are never isolated as they are always adjacent to  $\langle r \rangle$ . A Type-I vertex  $\langle r^d \rangle$  is isolated if and only if p|d, for all primes p|n, i.e., if  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , then the number of isolated vertices are  $\alpha_1 \alpha_2 \cdots \alpha_k - 1$ .

As  $D_n$  is solvable, it is connected if and only if it has no isolated vertex if and only if  $\alpha_1 \alpha_2 \cdots \alpha_k - 1 = 0$  if and only if n is square-free. **Theorem 3.2.4** The minimum degree of  $\Gamma^*(D_n)$  is given by

$$\delta(\Gamma^*(D_n)) = \begin{cases} 1, & \text{if } n \text{ is odd,} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

**Proof**: If *n* is odd, then  $\langle s \rangle$  is adjacent only to  $\langle r \rangle$ , and hence  $\delta = 1$ . If *n* is even, then  $\langle s \rangle$  is adjacent only to  $\langle r \rangle$  and  $\langle r^2, rs \rangle$ . Thus degree of  $\langle s \rangle$  is 2. We need to show that no vertex have degree 1. Note that every Type-II vertex is adjacent to  $\langle r \rangle$  and exactly one of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ , i.e., degree of a Type-II vertex is  $\geq 2$ . Let  $\langle r^d \rangle$  be a non-isolated Type-I vertex. Then *d* misses at least one prime factor of *n*, say *p*. Then  $\langle r^d \rangle$  is adjacent to  $\langle r^p, s \rangle$  and  $\langle r^p, rs \rangle$ , i.e., its degree is  $\geq 2$ .

**Corollary 3.2.3** Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  be odd. The number of pendant vertices in  $\Gamma(D_n)$  is

$$p_1 p_2 \cdots p_k \prod_{i=1}^k \frac{(p_i^{\alpha_i} - 1)}{(p_i - 1)}$$

**Proof**: If n is even, by Theorem 3.2.4, the minimum degree is 2 and hence  $\Gamma(D_n)$  has no pendant vertex. So, we assume that n is odd.

We start by observing that Type-I vertices of the form  $\langle r^d \rangle$  are never pendant, as if  $\langle r^d \rangle \sim \langle r^x, r^i s \rangle$ , then  $\langle r^d \rangle \sim \langle r^x, r^j s \rangle$  for  $j \neq i$ . Thus Type-II vertices are the only possible choices for pendant vertices.

Let  $\langle r^d, r^i s \rangle$  be a pendant vertex. If  $p_i \nmid d$  for some *i*, then  $\langle r^d, r^i s \rangle$  is adjacent to at least two vertices, namely  $\langle r \rangle$  and  $\langle r^{p_i} \rangle$ . Thus  $p_i | d$  for all *i*.

Finally, if  $p_i | d$  for all i, then it is easy to observe that  $\langle r^d, r^i s \rangle$  is adjacent

only to  $\langle r \rangle$ . Now, the corollary follows by counting the number of such vertices.

**Proposition 3.2.4** The girth of  $\Gamma(D_n)$  is 3 for  $n \ge 3$  and n is not an odd prime power.

**Proof**: If *n* is even, then  $\langle r \rangle$ ,  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$  forms a triangle. If *n* is odd, but not a prime power, then there exist two distinct prime factors, say p, q of *n*. Then  $\langle r \rangle$ ,  $\langle r^p, s \rangle$  and  $\langle r^q, s \rangle$  forms a triangle.  $\Box$ 

**Proposition 3.2.5**  $\Gamma^*(D_n)$  is a star if and only if n is an odd prime power.

**Proof**: Let  $n = p^k$  where p is an odd prime. Then all Type-I vertices except  $\langle r \rangle$  are isolated in  $\Gamma(D_n)$  and  $\langle r \rangle$  is an universal vertex in  $\Gamma^*(D_n)$ . Now, as any Type-II vertex is of the form  $\langle r^{p^l}, r^i s \rangle$ , no two of them are adjacent and hence  $\Gamma^*(D_n)$  is a star.

Conversely, if  $\Gamma^*(D_n)$  is a star and n is not an odd prime power, by above Proposition,  $\Gamma(D_n)$  has a triangle, a contradiction.

As  $D_n$  is a finite solvable group, by Theorem 2.2.4,  $\Gamma^*(D_n)$  is connected and its diameter is less than or equal to 4. In the next theorem, we compute the diameter of  $\Gamma^*(D_n)$  and show that it is either 2 or 3.

Theorem 3.2.5

$$Diam(\Gamma^*(D_n)) = \begin{cases} 2, & n = p^k \\ 3, & else \end{cases}$$

**Proof**: If n is an odd prime power, by Proposition 3.2.5,  $\Gamma^*(D_n)$  is a star and hence  $Diam(\Gamma^*(D_n)) = 2$ . If  $n = 2^k$ , then by Theorem 3.6 [23],  $\Gamma^*(D_n)$ has an universal vertex and hence  $Diam(\Gamma^*(D_n)) = 2$ .

If n is not a prime power, then n has at least two distinct prime factors. Let  $n = p^{\alpha}q^{\beta}m$ , where m is coprime to p and q. Then consider the vertices  $A = \langle r^{p^a} \rangle$  and  $B = \langle r^{n/p^a} \rangle$ . Clearly they are non-adjacent. As both are Type-I vertices, if they have a common neighbour, it must be a Type-II vertex, say  $\langle r^d, r^i s \rangle$ . But that means  $d|n, d \neq 1$  and d is coprime to both  $p^a$  and  $n/p^a$ , a contradiction. Thus A and B have no common neighbour, i.e., d(A, B) > 2. Consider the path  $\langle r^{p^a} \rangle \sim \langle r^q, s \rangle \sim \langle r^p, s \rangle \sim \langle r^{n/p^a} \rangle$  and hence d(A, B) = 3.

We claim that any two vertices are atmost at distance 3 from the other. If both the vertices are of Type-II, then they always have a common neighbour  $\langle r \rangle$  and hence their distance is atmost 2. If both are of Type-I and are not isolated, say  $\langle r^{d_1} \rangle$  and  $\langle r^{d_2} \rangle$ , then both  $d_1$  and  $d_2$  miss at least one prime factor of n, say p and q. If  $p \neq q$ , then  $\langle r^{d_1} \rangle \sim \langle r^p, s \rangle \sim \langle r^q, s \rangle \sim \langle r^{d_2} \rangle$ , i.e., their distance is atmost 3. If p = q, then  $\langle r^{d_1} \rangle \sim \langle r^p, s \rangle \sim \langle r^{d_2} \rangle$ , i.e., their distance is at most 2. Thus we are left with the case where one of the vertex is of Type-I and other is of Type-II, say  $\langle r^{d_1} \rangle$  and  $\langle r^{d_2}, r^i s \rangle$ . As  $\langle r^{d_1} \rangle$  is not isolated,  $d_1$  misses at least one prime factor of n, say p. Thus  $\langle r^{d_1} \rangle \sim \langle r^p, s \rangle \sim \langle r \rangle \sim \langle r^{d_2}, r^i s \rangle$ , i.e., their distance is at most 3. Hence the theorem follows.

In the next theorem, we check when  $\Gamma^*(D_n)$  is Eulerian.

**Theorem 3.2.6**  $\Gamma^*(D_n)$  is Eulerian if and only if n is even and all odd prime factors of n are of even exponent.

**Proof**: Let  $\Gamma^*(D_n)$  be Eulerian. If n is odd, by Theorem 3.2.4, minimum degree is 1, i.e., odd, a contradiction. So n must be even. Let n has an odd prime factor p of odd exponent  $\alpha$ , i.e.,  $n = p^{\alpha}m$ , where m is even and  $p \nmid m$ . Consider the vertex  $\langle r^m \rangle$ . Observe that its only neighbours are of the form  $\langle r^{p^*}, r^i s \rangle$ . Thus degree of  $\langle r^m \rangle$  is  $p + p^2 + \cdots + p^{\alpha}$ , i.e., odd, a contradiction. Hence all odd prime factors of n are of even exponent.

Conversely, let n be even and all odd prime factors of n are of even exponent. Let  $n = 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $\alpha_i$ 's are even. We will show that all non-isolated vertices have even degree.

Let us first consider the Type-I vertices of the form  $\langle r^d \rangle$ . If d is divisible by all the prime factors of n, then  $\langle r^d \rangle$  is an isolated vertex. So, we assume that d is not divisible by some prime factors of n. Suppose  $p_{i_1}, p_{i_2}, \ldots, p_{i_t}$ are the prime factors of n not dividing d. Then the neighbours of  $\langle r^d \rangle$  are of the form  $\langle r^{p_{i_1}\beta_1}p_{i_2}\beta_2\cdots p_{i_t}\beta_t, r^j s \rangle$ , where not all  $\beta_i$ 's are zero simultaneously. Thus degree of  $\langle r^d \rangle$  is  $\sigma(p_{i_1}\alpha_{i_1}p_{i_2}\alpha_{i_2}\cdots p_{i_t}\alpha_{i_t}) - 1$ , which is even, as each  $\alpha_i$ is even. Thus Type-I vertices are of even degree.

Now, we consider the Type-II vertices of the form  $\langle r^d, r^i s \rangle$ . If d is divisible by all the prime factors of n, then  $\langle r^d, r^i s \rangle$  has precisely two neighbours,  $\langle r \rangle$ and exactly one of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ . So, we assume that d is not divisible by some prime factors of n. Suppose  $p_{i_1}, p_{i_2}, \ldots, p_{i_t}$  are the prime factors of n not dividing d. Case 1:  $(2 \nmid d)$  In this case, the neighbours of  $\langle r^d, r^i s \rangle$  are of the form  $\langle r^{p_{i_1}\beta_1}p_{i_2}\beta_2\cdots p_{i_t}\beta_t \rangle$  and  $\langle r^{p_{i_1}\beta_1}p_{i_2}\beta_2\cdots p_{i_t}\beta_t, r^j s \rangle$  where not all  $\beta_i$ 's are zero. Thus the degree of  $\langle r^d, r^i s \rangle$  is

$$\tau(p_{i_1}^{\alpha_{i_1}} p_{i_2}^{\alpha_{i_2}} \cdots p_{i_t}^{\alpha_{i_t}}) + \sigma(p_{i_1}^{\alpha_{i_1}} p_{i_2}^{\alpha_{i_2}} \cdots p_{i_t}^{\alpha_{i_t}}) - 2,$$

which is even, as explained earlier.

Case 2: (2|d) In this case, apart from the neighbours mentioned in Case 1,  $\langle r^d, r^i s \rangle$  has neighbours of the form  $\langle r^{2^\beta p_{i_1}\beta_1 p_{i_2}\beta_2 \dots p_{i_t}\beta_t}, r^j s \rangle$ , where i - jis odd. However, proceeding similarly as above, it can be shown that the number of such neighbours is also even. As a result the degree of Type-II vertices are also even. This proves the theorem.

## 3.2.2 Domination number, Chromatic Number and Perfectness of $\Gamma(D_n)$

In this section, we study the domination number, chromatic number of  $\Gamma(D_n)$  and characterize when  $\Gamma(D_n)$  is perfect.

**Theorem 3.2.7** The domination number of  $\Gamma^*(D_n)$  is given by

$$\gamma(\Gamma^*(D_n)) = \begin{cases} 1, & \text{if } n \text{ is a prime power,} \\ \pi(n) + 1, & \text{otherwise.} \end{cases}$$

**Proof**: If n is a prime power, by Proposition 3.2.5,  $\Gamma^*(D_n)$  is a star and hence the theorem follows. Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ . Clearly  $\{\langle r \rangle, \langle r^{p_1}, s \rangle, \langle r^{p_2}, s \rangle, \dots, \langle r^{p_k}\}$ is a dominating set of  $\Gamma^*(D_n)$  and hence  $\gamma(\Gamma^*(D_n)) \leq k + 1$ . If possible, let  $S = \{x_1, x_2, \ldots, x_k\}$  be a dominating set of size k. Set  $m = p_1 p_2 \cdots p_k$  and consider the set of k+1 vertices  $A = \{\langle r^{m/p_1} \rangle, \langle r^{m/p_2} \rangle, \ldots, \langle r^{m/p_k} \rangle, \langle r^m, s \rangle$ Among these k + 1 vertices, at least one of them is not in S. Without loss of generality, let  $\langle r^{m/p_1} \rangle \notin S$  and  $\langle r^{m/p_1} \rangle \sim x_1$ . Then  $x_1$  is of the form  $\langle r^{p_1^{\beta_1}}, r^{i_1}s \rangle$ . Note that  $x_1$  is not adjacent to any one of k vertices in the set  $A' = \{\langle r^{m/p_2} \rangle, \ldots, \langle r^{m/p_k} \rangle, \langle r^m, s \rangle\}$ . By similar argument, not all of these k vertices in A' belong to S. Without loss of generality, we get  $x_2 = \langle r^{p_2^{\beta_2}}, r^{i_2}s \rangle, \ldots, x_k = \langle r^{p_k^{\beta_k}}, r^{i_k}s \rangle$ .

If n is odd, then  $\langle r^m, s \rangle$  is not adjacent to any  $x_i$ , a contradiction. If n is even, then either  $\langle r^m, s \rangle$  or  $\langle r^m, rs \rangle$  is not dominated by any  $x_i$ , a contradiction. Hence,  $\gamma(\Gamma^*(D_n)) = k + 1$ .

**Theorem 3.2.8**  $\Gamma(D_n)$  is weakly perfect, i.e., the clique number and chromatic number of  $\Gamma(D_n)$  are given by

$$\chi(\Gamma(D_n)) = \omega(\Gamma(D_n)) = \begin{cases} \pi(n) + 1, & \text{if } n \text{ is odd} \\ \pi(n) + 2, & \text{if } n \text{ is even.} \end{cases}$$

**Proof**: We first deal with the case when n is odd, say  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , where  $p_i$ 's are distinct odd primes. Consider the set  $A = \{\langle r \rangle, \langle r^{p_1}, s \rangle, \langle r^{p_2}, s \rangle, \ldots, \langle r^{p_k}, s \rangle$ Clearly A forms a clique of size  $k + 1 = \pi(n) + 1$ , i.e.,  $\omega(\Gamma(D_n)) \ge \pi(n) + 1$ . Let M be a maximum clique of  $\Gamma(D_n)$  of size  $t \ge k + 2$ . If M contains only vertices of Type-II, then  $M \cup \langle r \rangle$  is a clique properly containing M, a contradiction. Thus M always contains a vertex of Type-I. As no two vertices of Type-I are adjacent, M can have exactly one vertex of Type-I. Without loss of generality, we can assume the Type-I vertex in M to be  $\langle r \rangle$ . Let  $M = \{\langle r \rangle, \langle r^{a_1}, r^{b_1}s \rangle, \langle r^{a_2}, r^{b_2}s \rangle, \ldots, \langle r^{a_{t-1}}, r^{b_{t-1}}s \rangle\}$ . Thus  $a_1, a_2, a_{t-1}$  are mutually coprime factors of n and  $a_i \neq 1$ . But as n has  $\pi(n)$  distinct prime factors, it can have at most  $\pi(n) = k < t-1$  mutually coprime factors. Thus  $\omega(\Gamma(D_n)) = \pi(n) + 1$ .

Similarly, if n is even, i.e.,  $n = 2^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ , it can be easily checked that  $B = \{\langle r \rangle, \langle r^2, s \rangle, \langle r^2, rs \rangle, \langle r^{p_2}, s \rangle, \ldots, \langle r^{p_k}, s \rangle\}$  is a clique of size  $k + 2 = \pi(n) + 2$ . Thus  $\omega(\Gamma(D_n)) \ge \pi(n) + 2$ . Let M be a maximum clique of  $\Gamma(D_n)$  of size t. As in the previous case, M have exactly one vertex of Type-I. Let  $M = \{\langle r \rangle, \langle r^{a_1}, r^{b_1}s \rangle, \langle r^{a_2}, r^{b_2}s \rangle, \ldots, \langle r^{a_{t-1}}, r^{b_{t-1}}s \rangle\}$ . Arguing as in the previous case, the number of odd divisors of n among  $a_1, a_2, a_{t-1}$  is at most k - 1. Again due to the adjacency condition of Type-II vertices, the number of odd divisors of n among  $a_1, a_2, a_{t-1}$  is at most 2. Thus M can have at most 1 + 2 + (k - 1) = k + 2 vertices, i.e.,  $\omega(\Gamma(D_n)) = \pi(n) + 2$ .

As  $\chi \ge \omega$ , it suffices to produce a proper colouring using  $\omega$  colours. If  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  is odd, define

$$A_{1} = \{ \langle r^{d} \rangle, \langle r^{d}, r^{i}s \rangle : p_{1}|d\}, A_{2} = \{ \langle r^{d} \rangle, \langle r^{d}, r^{i}s \rangle : p_{2}|d\} \setminus A_{1}, \cdots, A_{j} = \{ \langle r^{d} \rangle, \langle r^{d}, r^{i}s \rangle : p_{j}|d\} \setminus \bigcup_{l=1}^{j-1} A_{l}, \text{ where } j = 1, 2, \dots, k.$$

Observe that  $A_1, A_2, \ldots, A_k$  are independent sets in  $\Gamma(D_n)$ . We assign the colour j to all the vertices in  $A_j$  and the k + 1 the colour to  $\langle r \rangle$ . It can be

easily checked that this is a proper colouring of  $\Gamma(D_n)$  using  $k+1 = \pi(n)+1$  colours.

Similarly, if n is even, we construct similar independent sets for each prime as above, with the following exception for the prime 2. For the prime 2, we construct two sets  $X = \{\langle r^d \rangle, \langle r^d, r^i s \rangle : 2 | d, i \text{ is odd} \}$  and  $Y = \{\langle r^d \rangle, \langle r^d, r^i s \rangle : 2 | d, i \text{ is even} \}$ . One can easily check that this gives a proper colouring  $\Gamma(D_n)$  using  $\pi(n) + 2$  colours.

**Theorem 3.2.9**  $\Gamma(D_n)$  is perfect if and only if one of the two conditions hold:

- n is odd and  $\pi(n) \leq 4$ .
- n is even and either  $\pi(n) \leq 2$  or  $\pi(n) = 3$  and  $4 \nmid n$ .

**Proof**: If n is odd and  $\pi(n) \geq 5$ , let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_5^{\alpha_5} m$ , where  $p_i$ 's are odd primes which are coprime to m. Then  $\langle r^{p_1 p_2}, s \rangle \sim \langle r^{p_3 p_4}, s \rangle \sim \langle r^{p_2 p_5}, s \rangle \sim$  $\langle r^{p_1 p_4}, s \rangle \sim \langle r^{p_3 p_5}, s \rangle \sim \langle r^{p_1 p_2}, s \rangle$  is an induced 5-cycle in  $\Gamma(D_n)$  and hence  $\Gamma(D_n)$  is not perfect.

Let n be odd and  $\pi(n) \leq 4$ . Let  $C : x_1 \sim x_2 \sim \cdots \sim x_{2t+1} \sim x_1$  be an induced odd cycle in  $\Gamma(D_n)$ . As n is odd and any subgroup of  $D_n$  is of the form  $\langle r^d \rangle$  or  $\langle r^d, r^i s \rangle$ , it follows from the adjacency condition that  $\langle r^{d_1} \rangle \sim \langle r^{d_2}, r^i s \rangle$  or  $\langle r^{d_1}, r^i s \rangle \sim \langle r^{d_2}, r^j s \rangle$  if and only if  $gcd(d_1, d_2) = 1$ . Thus for each vertex  $x_i$  in C we can associate a factor  $d_i$  of n such that  $x_i \sim x_j$ if and only if  $gcd(d_i, d_j) = 1$ . Now, by following the steps in the proof of Theorem 3.2 in [39], one can show that  $\Gamma(D_n)$  is perfect. If n is even and  $\pi(n) \geq 4$ , let  $n = 2^{\alpha_1} p_2^{\alpha_2} \cdots p_4^{\alpha_4} m$ , where  $p_i$ 's are odd primes which are coprime to m. Then  $\langle r^{p_2} \rangle \sim \langle r^{2p_2p_3}, rs \rangle \sim \langle r^{p_3p_4} \rangle \sim \langle r^{2p_4}, r^2s \rangle \sim \langle r^{2p_2}, s \rangle \sim \langle r^{p_2} \rangle$  is an induced 5-cycle in the complement of  $\Gamma(D_n)$  and hence  $\Gamma(D_n)$  is not perfect.

If  $\pi(n) = 3$  and 4|n, let  $n = 2^{\alpha} p_2^{\alpha_2} p_3^{\alpha_3}$  where  $p_i$ 's are odd primes. Then  $\langle r^{p_1} \rangle \sim \langle r^4, s \rangle \sim \langle r^{p_2} \rangle \sim \langle r^{2p_1}, s \rangle \sim \langle r^{4p_2}, rs \rangle \sim \langle r^{p_1} \rangle$  is an induced 5-cycle in the complement of  $\Gamma(D_n)$  and hence  $\Gamma(D_n)$  is not perfect.

Thus, if n is even, we are left with two cases, either  $n = 2^{\alpha} p_2^{\alpha_2}$  or  $n = 2p_2^{\alpha_2} p_3^{\alpha_3}$ . These two cases are dealt with in the following two lemmas.  $\Box$ 

## **Lemma 3.2.6** If $n = 2^{\alpha} p_2^{\alpha_2}$ , then $\Gamma(D_n)$ is perfect.

**Proof**: Note that any vertex of the form  $\langle r^d \rangle$  or  $\langle r^d, r^i s \rangle$  where  $2p_2|d$  are of degree 0 or 2 respectively in  $\Gamma(D_n)$ . In fact,  $\langle r^d, r^i s \rangle$  is adjacent to exactly two vertices, namely  $\langle r \rangle$  and exactly one of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ . If possible, let  $C: x_1 \sim x_2 \sim \cdots \sim x_{2t+1} \sim x_1$  be an induced odd cycle of length atleast 5 in  $\Gamma(D_n)$ . Clearly C must have atleast one Type-II vertex. As  $\langle r \rangle$  does not lie on C, any vertex of the form  $\langle r^d, r^i s \rangle$  where  $2p_2|d$  does not lie on C.

Claim A: If  $x_1 = \langle r^{d_1}, r^i s \rangle$  is a Type-II vertex on C, then  $d_1$  is even. Proof of Claim A: If  $d_1$  is odd, then  $d_1 = p_2^{\beta}$ . As  $x_1 \not\sim x_3, x_4$ , we have  $x_3 = \langle r^{p_2^a} \rangle$  or  $\langle r^{p_2^a}, r^j s \rangle$  and  $x_4 = \langle r^{p_2^b} \rangle$  or  $\langle r^{p_2^b}, r^k s \rangle$ . In any case, we have  $x_3 \not\sim x_4$ , a contradiction.

Claim B: There exists no Type-I vertex on C.

Proof of Claim B: If there exists two vertices, say  $x_1, x_k$  of Type-I on C. Clearly they must be non-adjacent. Using Claim A,  $x_1 = \langle r^{p_2^{\beta}} \rangle$  and  $x_k =$   $\langle r^{p_2^{\beta'}} \rangle$ . But as  $x_2, x_{2t+1} \sim x_1$ , we must have  $x_k \sim x_2, x_{2t+1}$ , a contradiction. So atmost one Type-I vertex can be on C, say  $x_1 = \langle r^{p_2^{\beta}} \rangle$ . As  $x_1 \not\sim x_3, x_4$ and both are Type-II vertices, by Claim A, we must have  $x_3 = \langle r^{d_3}, r^{i_3} \rangle$ and  $x_4 = \langle r^{d_4}, r^{j_3} \rangle$  where  $2p_2$  divides  $d_3$  and  $d_4$ . However such vertices do not lie on C.

Thus all the vertices on C are of Type-II, i.e.,  $x_l = \langle r^{d_l}, r^{i_l}s \rangle$  for  $l = 1, 2, \ldots, 2t + 1$  where  $d_l$ 's are even. Again from the adjacency condition, we have all of  $i_1 - i_2, i_2 - i_3, \ldots, i_{2t+1} - i_1$  to be odd. Adding all of them, we get the sum of odd number of odd integers to be zero, a contradiction. Thus  $\Gamma(D_n)$  has no induced odd cycle of length at least 5. Similarly, it can be shown that  $\Gamma(D_n)^c$  has no induced odd cycle of length at least 5. Hence  $\Gamma(D_n)$  is perfect.

# **Lemma 3.2.7** If $n = 2^{\alpha} p_2^{\alpha_2} p_3^{\alpha_3}$ , then $\Gamma(D_n)$ is perfect

**Proof**: If possible, let  $C: x_1 \sim x_2 \sim \cdots \sim x_{2t+1} \sim x_1$  be an induced odd cycle of length at least 5 in  $\Gamma(D_n)$ . As no two Type-I vertices are adjacent, thus we must have at least  $t+1 \geq 3$  Type-II vertices in C.

Claim 1:  $\langle r^d, r^i s \rangle$ , where  $2p_1p_2|d$  does not lie in C.

Proof of Claim 1: Its only neighbours are  $\langle r \rangle$  and exactly one of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ . As  $\langle r \rangle$  is adjacent to all Type-II vertices and there are atleast 3 Type-II vertices in C,  $\langle r \rangle$  does not lie on C. Thus  $\langle r^d, r^i s \rangle$  can have atmost one neighbour in C, which is a contradiction as C is a cycle.

Claim 2: None of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$  lie in C.

Proof of Claim 2: If  $x_1 = \langle r^2, s \rangle$  lies in C, then as  $\langle r^2, s \rangle$  is a maximal

subgroup of index 2 in  $D_n$ , all of  $x_3, x_4, \ldots, x_{2t}$  are contained in  $x_1$ . Thus, using Claim 1, without of loss of generality, we can assume that  $x_3 = \langle r^{2p_1^{\beta_1}}, r^i s \rangle$  and  $x_3 = \langle r^{2p_2^{\beta_2}}, r^j s \rangle$ . As  $x_3 \sim x_4$ , we have i - j is odd. On the other hand, as  $x_1 \not\sim x_3, x_4$ , we must have i and j to be both even. This contradicts the parity of i - j.

Claim 3: Vertices of the form  $\langle r^{p_1^{\beta_1}p_2^{\beta_2}} \rangle$  and  $\langle r^{p_1^{\beta_1}p_2^{\beta_2}}, r^i s \rangle$  do not lie in C. Proof of Claim 3: As  $\langle r^{p_1^{\beta_1}p_2^{\beta_2}} \rangle$  is adjacent only with  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ , the claim follows from Claim 2. Similarly, only neighbours of  $\langle r^{p_1^{\beta_1}p_2^{\beta_2}}, r^i s \rangle$  in  $\Gamma(D_n)$  are  $\langle r \rangle$ ,  $\langle r^2 \rangle$  and exactly one of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ . However, from Claim 2, its only possible neighbour in C is  $\langle r^2 \rangle$ , a contradiction. Hence Claim 3 holds.

Claim 4:  $\langle r^2 \rangle$  lies in C.

Proof of Claim 4: Suppose  $\langle r^2 \rangle$  does not in C. Then from Claims 1,2 and 3, it follows that for any vertex  $\langle r^{d_i} \rangle$  or  $\langle r^{d_i}, r^i s \rangle$  in C,  $d_i$  must be of the form  $p_1^{\beta_1}, p_2^{\beta_2}, 2p_1^{\beta_1}$  or  $2p_2^{\beta_2}$ . Again, as C is cycle,  $d_i$  must be alternately divisible by  $p_1$  and  $p_2$ . But this contradicts that C is an odd cycle. Thus the claim follows.

Let  $x_1 = \langle r^2 \rangle$  be a vertex on C. As  $x_1$  is a Type-I vertex, from the adjacency condition and previous claims, without loss of generality, we have  $x_2 = \langle r^{p_1^{\beta}}, r^i s \rangle$  and  $x_{2t+1} = \langle r^{p_1^{\beta'}}, r^j s \rangle$ . Then  $x_3$  must be of one of the 4 forms, namely  $\langle r^{p_2^{\beta_2}} \rangle, \langle r^{p_2^{\beta_2}}, r^j s \rangle, \langle r^{2p_2^{\beta_2}} \rangle$  and  $\langle r^{2p_2^{\beta_2}}, r^j s \rangle$ . However, in any case, we have  $x_3 \sim x_{2t+1}$ , a contradiction. Thus  $\Gamma(D_n)$  has no induced odd cycle of length at least 5.

#### **3.2.3** Isomorphisms of $\Gamma(D_n)$

In this section, we discuss some isomorphism results of  $\Gamma(D_n)$ . The first result (Theorem 3.2.10) shows that co-maximal graph of  $D_n$  uniquely determines n. The second result (Theorem 3.2.11) is more general in nature. It shows that nilpotent dihedral groups are uniquely determined by their comaximal subgroup graphs.

**Lemma 3.2.8** Let n and m be two positive integers such that  $\Gamma(D_n) \cong \Gamma(D_m)$ . Then n and m are of same factorization type.

**Proof**: As  $\Gamma(D_n) \cong \Gamma(D_m)$ , from Theorem 3.2.4, it follows that n and m have same parity. Thus, by Theorem 3.2.8,  $\pi(n) = \pi(m)$ , i.e., m and n have same number of distinct prime factors. So we assume that  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  and  $m = q_1^{\beta_1} q_2^{\beta_2} \cdots q_k^{\beta_k}$ .

Consider the Type-I vertices other than  $\langle r \rangle$  in  $\Gamma(D_n)$ . Note that  $\{\langle r^{p_1} \rangle, \langle r^{p_1^2} \rangle, \cdots, \langle r^p \rangle$ is one of the twin class of size  $\alpha_1$ . Similarly, we get twin classes of size  $\alpha_2, \alpha_3, \ldots, \alpha_k$ . Again, note  $\{\langle r^{p_1p_2} \rangle, \langle r^{p_1^2p_2} \rangle, \cdots, \langle r^{p_1^{\alpha_1}p_2^{\alpha_2}} \rangle\}$  is a twin class of size  $\alpha_1\alpha_2$ . Proceeding this way, Type-I vertices other than  $\langle r \rangle$ , can be partitioned into twin classes of size

$$\mathcal{P}_n = \{ \alpha_1, \alpha_2, \dots, \alpha_k, \alpha_1 \alpha_2, \alpha_2 \alpha_3, \dots, \alpha_1 \alpha_2 \cdots \alpha_k \}.$$

Similarly for  $\Gamma(D_m)$ , we get

$$\mathcal{P}_m = \{\beta_1, \beta_2, \dots, \beta_k, \beta_1 \beta_2, \beta_2 \beta_3, \dots, \beta_1 \beta_2 \cdots \beta_k\}.$$

As  $\Gamma(D_n) \cong \Gamma(D_m)$ , we have  $\mathcal{P}_n = \mathcal{P}_m$ . If  $\alpha_i = \beta_{\sigma(i)}$  for some  $\sigma \in S_k$ , we are done. If no  $\alpha_i$  is equal to any  $\beta_j$ , then without loss of generality, let  $\alpha_1 = \min\{\alpha_1, \alpha_2, \ldots, \alpha_k, \beta_1, \beta_2, \ldots, \beta_k\}$ . Therefore,  $\alpha_1 < \beta_i$  for all *i*. Thus  $\alpha_1 \in \mathcal{P}_n$ , but  $\alpha_1 \in \mathcal{P}_m$ , as  $\beta_i > \alpha_1$ . This contradicts the fact  $\mathcal{P}_n = \mathcal{P}_m$ . Thus some  $\alpha_i$ 's are equal to some  $\beta_j$ . By suitable renaming, let  $\alpha_1 = \beta_1, \alpha_2 =$  $\beta_2, \ldots, \alpha_i = \beta_i$  and none of  $\alpha_{i+1}, \ldots, \alpha_k$  is not equal to any of  $\beta_{i+1}, \ldots, \beta_k$ . Therefore each of  $\alpha_{i+1}, \ldots, \alpha_k$  is product of atleast two  $\beta_j$ 's. Similarly, each of  $\beta_{i+1}, \ldots, \beta_k$  is product of atleast two  $\alpha_j$ 's.

We remove all the terms involving  $\alpha_1, \alpha_2, \ldots, \alpha_i$  from  $\mathcal{P}_n$  to get a new set  $\mathcal{P}'_n$ . Similarly, we remove all the terms involving  $\beta_1, \beta_2, \ldots, \beta_i$  from  $\mathcal{P}_m$ to get a new set  $\mathcal{P}'_m$ . Hence we have  $\mathcal{P}'_n = \mathcal{P}'_m$ .

Let  $\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_t}$  be the smallest element of  $\mathcal{P}'_n$ . Then at least one of  $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_t}$  does not belong to  $\{\alpha_1, \alpha_2, \ldots, \alpha_i\}$ . Let  $\alpha_{i_1} \notin \{\alpha_1, \alpha_2, \ldots, \alpha_i\}$ . Then  $\alpha_{i_1} \in \mathcal{P}'_n$  and  $\alpha_{i_1} \leq \alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_t}$ . Thus  $\alpha_{i_1}$  is also smallest in  $\mathcal{P}'_n = \mathcal{P}'_m$ .

Therefore  $\alpha_{i_1} = \beta_{j_1}\beta_{j_2}\cdots\beta_{j_t} \in \mathcal{P}'_m$ . Arguing similarly, without loss of generality,  $\beta_{j_1}$  is the smallest element in  $\mathcal{P}'_m$ . Thus  $\alpha_{i_1} = \beta_{j_1}$ , a contradiction. Hence,  $\alpha_i = \beta_{\sigma(i)}$  for some  $\sigma \in S_k$  and the theorem follows.

**Theorem 3.2.10** Let n and m be two positive integers such that  $\Gamma(D_n) \cong \Gamma(D_m)$ . Then n = m.

**Proof**: From Lemma 3.2.8, we get that  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  and  $m = q_1^{\alpha_1} q_2^{\alpha_2} \cdots q_k^{\alpha_k}$ . Thus, it suffices to show that  $p_i = q_i$  for all *i*. We consider the case when both *m* and *n* are odd. The case when both *m* and *n* are even can be handled similarly.

Consider the maximum clique  $A = \{\langle r \rangle, \langle r^{p_1}, s \rangle, \langle r^{p_2}, s \rangle, \dots, \langle r^{p_k}, s \rangle\}$  of  $\Gamma^*(D_n)$  as defined in the proof of Theorem 3.2.8. Note that it contains exactly one vertex of Type-I and k-vertices of Type-II. As  $\Gamma(D_n) \cong \Gamma(D_m)$ , under any isomorphism, A is mapped to a maximum clique B of  $\Gamma^*(D_m)$ . Without loss of generality,

$$B = \{ \langle r \rangle, \langle r^{q_1}, r^{i_1} s \rangle, \langle r^{q_2}, r^{i_2} s \rangle, \dots, \langle r^{q_k}, r^{i_k} s \rangle \}.$$

Now, consider the number of Type-I and Type-II neighbours of Type-II vertices in A. For example,  $\langle r^{p_i}, s \rangle$  has  $(\tau(n/p_i^{\alpha_i}) - 1)$  many Type-I neighbours and  $(\sigma(n/p_i^{\alpha_i}) - 1)$  many Type-II neighbours in  $\Gamma^*(D_n)$ . Similarly, we can compute the number of Type-I and Type-II neighbours of Type-II vertices in B. As  $\Gamma(D_n) \cong \Gamma(D_m)$ , the following two sets consisting of ordered pairs are equal.

$$\{(\tau(n/p_1^{\alpha_1}), \sigma(n/p_1^{\alpha_1})), (\tau(n/p_2^{\alpha_2}), \sigma(n/p_2^{\alpha_2})), \dots, (\tau(n/p_k^{\alpha_k}), \sigma(n/p_k^{\alpha_k}))\} = \{(\tau(m/q_1^{\alpha_1}), \sigma(m/q_1^{\alpha_1})), (\tau(m/q_2^{\alpha_2}), \sigma(m/q_2^{\alpha_2})), \dots, (\tau(m/q_k^{\alpha_k}), \sigma(m/q_k^{\alpha_k}))\}$$

Again, as  $\tau(m) = \tau(n), \sigma(m) = \sigma(n)$  and  $\tau, \sigma$  are multiplicative functions, we have

$$\{(\tau(p_1^{\alpha_1}), \sigma(p_1^{\alpha_1})), (\tau(p_2^{\alpha_2}), \sigma(p_2^{\alpha_2})), \dots, (\tau(p_k^{\alpha_k}), \sigma(p_k^{\alpha_k}))\} = \{(\tau(q_1^{\alpha_1}), \sigma(q_1^{\alpha_1})), (\tau(q_2^{\alpha_2}), \sigma(q_2^{\alpha_2})), \dots, (\tau(q_k^{\alpha_k}), \sigma(q_k^{\alpha_k}))\}$$

As these two sets are equal, there exists i such that  $(\tau(p_1^{\alpha_1}), \sigma(p_1^{\alpha_1})) = (\tau(q_i^{\alpha_i}), \sigma(q_i^{\alpha_i}))$ , i.e.,  $\alpha_1 = \alpha_i$  and hence  $\sigma(p_1^{\alpha_1}) = \sigma(q_i^{\alpha_1})$ , i.e.,  $p_1 = q_i$ . Similarly, it can be shown that set of prime factors of m and n are same and as a result, m = n.

**Theorem 3.2.11** Let G be a finite solvable group such that  $\Gamma(G) \cong \Gamma(D_{2^{\alpha}})$ . Then  $G \cong D_{2^{\alpha}}$ .

**Proof** : As  $\Gamma^*(D_{2^{\alpha}})$  has a unique universal vertex, namely  $\langle r \rangle$  and all other Type-I vertices are isolated, we get a subgroup H which is the unique universal vertex in  $\Gamma^*(G)$ .

Claim 1: H is a maximal subgroup G and  $H \triangleleft G$ .

Proof of Claim 1: If there exists a proper subgroup X of G such that  $H \subsetneq X$ , then  $deg(H) \leq deg(X)$  in  $\Gamma(G)$ , a contradiction. Thus H is a maximal subgroup of G. If H is not normal in G, there exists  $g \in G$  such that  $H' = gHg^{-1} \neq H$ . Note that  $K \sim H$  if and only if  $gKg^{-1} \sim gHg^{-1}$ , i.e., deg(H) = deg(H'), a contradiction. Thus  $H \triangleleft G$ .

From Claim 1, it follows that G/H is a prime order group, i.e., [G : H] = p, for some prime p. Thus  $|G| = p^a m$  and  $|H| = p^{a-1}m$ , where  $p \nmid m$ .

Claim 2: G is a group of prime power order.

Proof of Claim 2: Let q be a prime factor of m and K be a Sylow q-subgroup of G. If  $K \not\subseteq H$ , then KH = G, i.e.,

$$p^{a}m = \frac{(q^{b})(p^{a-1}m)}{|H \cap K|} = \frac{(q^{b})(p^{a-1}m)}{q^{t}} = q^{b-t}p^{a-1}m, \text{ i.e., } q^{b-t} = p, \text{ a contradiction.}$$

Thus if q is a prime factor of m, then every Sylow q-subgroup K of G is contained in H. Thus K corresponds to a Type-I vertex in  $\Gamma(D_{2^{\alpha}})$  and hence, if  $K \neq H$ , then K is an isolated vertex in  $\Gamma(D_{2^{\alpha}})$ . However, as G is solvable, K has a Hall complement L of order  $p^a m/q^b$  in G, i.e., KL = G, i.e.,  $K \sim L$ . Thus either m has no prime factor, i.e., m = 1 or K = H. If m = 1, then G is p-group and the claim holds. If K = H, then  $|H| = q^b$ , i.e., a = 1 and  $|G| = pq^b$ .

Again, note that  $\Gamma^*(D_{2^{\alpha}})$  has exactly two Type-II vertices of second highest degree, namely  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$  and every other Type-II vertices is adjacent to exactly one of  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$ . Let  $K_1, K_2$  be the two vertices in  $\Gamma^*(G)$  corresponding to  $\langle r^2, s \rangle$  and  $\langle r^2, rs \rangle$  respectively. As H is the universal vertex in  $\Gamma^*(G)$ , we have  $H \sim K_1$  and  $H \sim K_2$ , i.e.,  $K_1, K_2 \not\subseteq H$ . Thus  $|K_1| = pq^{t_1}$  and  $|K_2| = pq^{t_2}$ . Again, as  $\langle r^2, s \rangle \sim \langle r^2, rs \rangle$ , we have  $K_1 \sim K_2$ , i.e.,  $K_1K_2 = G$ , i.e.,

$$pq^b = \frac{pq^{t_1} \cdot pq^{t_2}}{|K_1 \cap K_2|}, \text{ i.e., } |K_1 \cap K_2| = pq^{t_1+t_2-b}.$$

If  $p \neq q$ ,  $K_1 \cap K_2 \not\subseteq H$ , i.e.,  $H \sim K_1 \cap K_2$  and  $K_1 \cap K_2$  corresponds to a Type-II vertex. Hence,  $K_1 \cap K_2$  must be adjacent to one of  $K_1$  and  $K_2$ . However,  $K_1 \cap K_2 \subseteq K_1, K_2$ , this is a contradiction. Thus we must have p = q and  $|G| = p^{b+1}$ . Hence Claim 2 holds. As G is a group of primepower order, G is nilpotent and  $\Gamma^*(G)$  has a unique universal vertex. Thus by Theorem 3.6 in [23], G must belong to one of the five families of groups, namely 3, 4, 5, 6, 7. As  $\Gamma^*(\mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_p)$  and  $\Gamma^*(M_{p^n})$  has p many universal vertices, G is not isomorphic to  $\mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_p$  or  $M_{p^n}$ . Again, as  $\Gamma^*(SD_{2^n})$  a unique vertex of second highest degree, G is not isomorphic to  $SD_{2^n}$ . If  $G \cong Q_{2^n}$ , then number of isolated vertices in  $\Gamma(G)$  is n-2 and the second highest degree is  $2^{n-2}$ . However,  $\Gamma(D_{2^{\alpha}})$  has  $\alpha - 1$  isolated vertices and its second highest degree is  $2^{\alpha}$ . This is a contradiction and hence  $G \ncong Q_{2^n}$ . Hence  $G \cong D_{2^{n-1}}$ . Finally, comparing the number of isolated vertices, we get  $G \cong D_{2^{\alpha}}$ .

### **3.3** Conclusion and Open Issues

In this chapter, we discussed various properties related to comaximal subgroup graph of  $\mathbb{Z}_n$  and  $D_n$ . However, some of the isomorphism problems are yet to be answered and can be interesting topics of further research.

- If G is a finite group such that  $\Gamma(G) \cong \Gamma(\mathbb{Z}_n)$ , what can we say about G?
- For the same question pertaining to  $D_n$ , a partial answer is provided in Theorem 3.2.11. Although the general case is still open.