
Chapter 4

Prime Ideal Sum Graph of a

Commutative Ring

Recently, investigation of graphs associated to algebraic structures has be-

come very common and investigating graph theoretic properties of rings

attracted many researchers. So, many research papers has been emerged

in which connections between algebraic properties of a ring and the graph-

theoretic properties of its graph are studied (see for instance [3, 10, 13, 17]

and [31])

It is known that behavior of ideals in a ring effects the structure of the

ring and so ideals play crucial roles in the study of ring constructions. That

is why it is useful to associate graphs to ideals of a ring as done for instance

in [5, 4, 20] or in [35]. Studies on these topics in the literature motivate us

to define a new graph containing ideals as vertices. So, the main purpose

of this chapter is to introduce and study prime ideal sum graph associated

with a ring.
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Throughout, R is a commutative ring with unity and as usual the rings of

integers and integers modulo n will be denoted by Z and Zn, respectively. A

prime ideal p is said to be an associated prime of a commutative Noetherian

ring R, if R has a non-zero element x such that p = Ann(x). By Ass(R)

and Spec(R) we mean the sets of all associated prime and prime ideals of R,

respectively. A ring R is said to be a general ZPI− ring if each of its ideal

can be expressed as a finite direct product of prime ideals of R. Dedekind

domians are indecomposable general ZPI-rings. A ring R is said to be local

if it has a unique maximal left ideal and is said to be reduced if it has no

non-zero nilpotent element. The set of all nilpotent elements of R is denoted

by
√
0. For any undefined notation or terminology in ring theory, we refer

the reader to [27, 29] and [42].

The main goal of this chapter is to introduce and study some of the basic

properties of the prime ideal sum graph PIS(R) of R [38]. The prime ideal

sum graph of R is a graph whose vertices are non-zero proper ideals of R

and two distinct vertices I and J are adjacent if and only if I + J is a

prime ideal of R. To avoid null graphs, throughout this chapter, we take

R to be a commutative ring with unity with at least one non-zero proper

ideal. We investigate the graph properties of PIS(R) such as diameter,

girth, domination number, etc. Among many results, we give in this section

a necessary and sufficient condition for the completeness and connectedness

of PIS(R) (Theorems 4.1.3 and 4.1.4). In Section 4.4, we characterize

PIS(R) for a general ZPI-ring. We determine in this section diameter and
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girth of PIS(R) under some assumptions on R (Theorems 4.4.2 and 4.4.3)

and the idea of bipartition for PIS(R) is also analyzed (Corollary 4.4.1).

4.1 Connectedness of PIS(R)

In this section we study some of the basic properties of prime ideal sum

graph PIS(R) of R like having universal and isolated vertices, completeness,

connectedness, diameter, girth etc.

Theorem 4.1.1 Let R be a ring. PIS(R) has a universal vertex if and

only if one of the two statements hold:

1. R is a local ring.

2. R has exactly two maximal ideals M1 and M2 such that M1 ∩M2 is a

non-trivial minimal ideal and that there is no non-prime ideal properly

containing M1 ∩M2.

Proof : Let (1) hold, i.e., R be a local ring with unique maximal ideal M .

Then for any ideal I of R, we have I +M = M , which is a prime ideal and

hence I ∼ M . Thus M is a universal vertex.

Let (2) hold and I = M1 ∩ M2. Suppose J is a non-trivial ideal other

than I and without loss of generality, let J ⊆ M1. As I is a minimal ideal,

it follows that I ⊊ I + J ⊆ M1. Now, from the given condition I + J is a

prime ideal and hence I is a universal vertex.

Conversely, let PIS(R) have a universal vertex, say I. If R has a unique

maximal ideal, the proof is done. Now, assume that R has at least three
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maximal ideals, say M1,M2 and M3. Note that I can not be a maximal

ideal as two distinct maximal ideals are not adjacent. As I is not a maximal

ideal, then it is contained in some maximal ideals, say M1, i.e., I ⊊ M1.

If possible, let I ̸⊂ M2. Then by maximality of M2, I + M2 = R. Hence

I ̸∼ M2, a contradiction. Thus I ⊆ M1 ∩ M2 ∩ M3. Now, two cases may

occur.

Case 1: Let I ̸= M1 ∩M2 ∩M3. In this case, as I +M1 ∩M2 ∩M3 =

M1∩M2∩M3 and I is a universal vertex in PIS(R), M1∩M2∩M3 is a prime

ideal in R. But M1M2M3 ⊆ M1 ∩M2 ∩M3 implies that M1 = M2 = M3, a

contradiction.

Case 2: Let I = M1 ∩M2 ∩M3. Let J = M1 ∩M2. Since intersection

of two maximal ideals can not be prime, I+J = J is not a prime ideal, i.e.,

I ̸∼ J , which contradicts with our assumption that I is a universal vertex.

Therefore, R has exactly two maximal ideals, say M1 and M2. By the same

argument above, we conclude that I = M1 ∩M2.

Now, we show that I is a minimal ideal. If possible, let there exists

a non-trivial ideal J ⊊ I = M1 ∩ M2. Then, as I is a universal vertex,

J + I = I = M1 ∩M2 is prime, a contradiction. Thus I is a minimal ideal.

If possible, let J be a non-prime ideal such that I = M1∩M2 ⊊ J ⊊ Mi,

where i = 1 or 2. But, this implies I + J = J , a non-prime ideal and hence

I ̸∼ J , a contradiction. Thus there does not exist such ideal J . □

Remark 4.1.1 Let R be a ring which is not reduced. Then
√
0 is adjacent

to each element of Spec(R).
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Please note that if R is a reduced ring then
√
0 is not a vertex of PIS(R).

So, the assumption R is not reduced in Remark 4.1.1 is not superfluous. In

the following, we give some equivalent statements for that
√
0 is a universal

vertex of PIS(R).

Corollary 4.1.2 Let R be a non-reduced ring. Then the following state-

ments are equivalent:

(1) Every element of R is either nilpotent or unit.

(2) R has a unique prime ideal.

(3) (R,
√
0) is a local ring.

(4)
√
0 is a universal vertex of PIS(R).

Proof : (1) ⇒ (2) It is clear by [42, 3.51 Exercise].

(2) ⇒ (3) If R has a unique prime ideal, then it is
√
0 which is also a unique

maximal ideal.

(3) ⇔ (4) It follows from Theorem 4.1.1.

(3) ⇒ (1) Let (R,
√
0) be a local ring. Suppose that a ∈ R is non-nilpotent.

Since a /∈
√
0 and

√
0 is a unique maximal ideal then a is unit. □

Theorem 4.1.2 An ideal I of R is an isolated vertex in PIS(R) if and

only if I is a maximal as well as minimal ideal of R.

Proof : Let I be an isolated vertex in PIS(R). If I is not a maximal ideal,

then it is properly contained in a maximal ideal M and I +M = M . Thus
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I ∼ M in PIS(R), a contradiction, and so I is a maximal ideal. If I is not

a minimal ideal, then there exists an ideal J of R such that {0} ⊊ J ⊊ I

and we have I+J = I, which is a prime ideal. Thus I ∼ J , a contradiction,

and so I is a minimal ideal of R.

Conversely, let I be a maximal as well as minimal ideal of R. If possible,

assume that I is not isolated in PIS(R). Then there exists a non-zero

proper ideal J of R other than I such that I + J is a prime ideal. If J ̸⊂ I,

then as I is maximal, we have I + J = R, which is not prime. On the

other hand if J ⊆ I, then by minimality of I, we have J = {0} or I = J ,

a contradiction. Thus such an ideal J does not exist and hence I is an

isolated vertex in PIS(R). □

Next, we characterize rings whose prime ideal sum graph is complete.

Theorem 4.1.3 PIS(R) is complete if and only if R is a local ring and

every proper non-prime ideal is a minimal ideal.

Proof : Let PIS(R) be a complete graph. Then PIS(R) has a univer-

sal vertex and hence either of the two conditions holds by Theorem 4.1.1.

Since two distinct maximal ideals can not be adjacent, R can not have two

maximal ideals. Hence (1) in Theorem 4.1.1 holds. Let I be a non-zero

proper ideal of R which is not prime. If possible, there exists an ideal J of

R such that {0} ⊊ J ⊊ I, then I + J = I. Since I is not a prime ideal,

I ̸∼ J , a contradiction to the completeness of PIS(R). Thus every proper

non-prime ideal is a minimal ideal.
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Conversely, let R be a local ring with unique maximal ideal, say M , and

every proper non-prime ideal be a minimal ideal. Let I1 and I2 be two

distinct non-zero proper ideals of R. Then I1, I2 ⊆ M . Suppose I1 + I2 =

I3 ⊆ M is not prime. Then by given condition, I3 is a minimal ideal. But

I1, I2 ⊆ I3 and I1, I2 are non-zero ideal. Thus I1 = I2 = I3, a contradiction.

Thus I1 + I2 is prime and hence I1 ∼ I2. Thus PIS(R) is complete. □

Theorem 4.1.4 Let R be a ring. Then PIS(R) is connected if and only if

R is not a direct sum of two fields. If PIS(R) is connected, then diam(PIS(R)) ≤
4. Moreover, if R is a principal ideal ring, then diam(PIS(R)) ≤ 2.

Proof : Let I1, I2 be two non-zero ideals in R. If I1 + I2 is a prime

ideal, then I1 ∼ I2 in PIS(R). Otherwise, assume that I1 + I2 is not

prime. Since R is a ring with unity, both I1 and I2 are contained in some

maximal ideals of R. If they are contained in the same maximal ideal, say

M , then we have I1 ∼ M ∼ I2, as maximal ideals are prime and hence

d(I1, I2) = 2. Thus we assume that I1 ⊂ M1, I2 ⊂ M2 and M1 ̸= M2

are two maximal ideals in R. Then we have a path of length 4 given by

I1 ∼ M1 ∼ M1 ∩M2 ∼ M2 ∼ I2, unless M1 ∩M2 = {0}. Thus d(I1, I2) ≤ 4

and hence diam(PIS(R)) ≤ 4. However if M1 ∩ M2 = {0}, we have R ∼=
R/{0} ∼= R/(M1 ∩M2) ∼= R/M1 ⊕R/M2. As M1,M2 are maximal ideals in

R, R/Mi is a field. Thus R is a direct sum of two fields.

Conversely, if R is direct sum of two fields F1 and F2, the only non-trivial

ideals of R are {0}×F2 and F1×{0}. In this case, PIS(R) consists of two
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isolated vertices and hence it is not connected. Thus the first part of the

theorem is proved.

For the second part, when R is a principal ideal ring, if I1 and I2 are

contained in same maximal ideal of R, then as it is shown in previous

case, we have d(I1, I2) ≤ 2. Thus, we assume that I1 ⊂ M1, I2 ⊂ M2 and

M1 ̸= M2 are two maximal ideals in R. Since R is a principal ideal ring,

let I1 = (a), I2 = (b),M1 = (x) and M2 = (y), for some a, b, x, y ∈ R.

First, we prove that xy ̸= 0. Because if xy = 0, then {0} = M1M2 =

M1 ∩ M2, which implies that R is a direct sum of two fields and hence

PIS(R) is disconnected, a contradiction. Thus xy ̸= 0. Let J = (xy).

Clearly I1 + J ⊆ M1. On the other hand, since I1 ̸⊂ M2, by maximality

of M2, we have I1 + M2 = R, i.e., (a) + (y) = R. Since 1 ∈ R, there

exist u, v ∈ R such that au + vy = 1 which implies aux + vxy = x. Then

(a) + (xy) = I1 + J . Thus, M1 ⊆ I1 + J and hence I1 + J = M1, which

is a prime ideal and I1 ∼ J in PIS(R). Similarly, it can be shown that

I2 + J = M2 and hence I2 ∼ J in PIS(R). Thus I1 ∼ J ∼ I2, d(I1, I2) ≤ 2

and hence the theorem follows. □

Corollary 4.1.3 If R is an integral domain, then diam(PIS(R)) ≤ 4.

4.2 Girth and Domination Number of PIS(R)

In this section, we study the girth and domination number of PIS(R).

Theorem 4.2.1 If any two non-comparable ideals are adjacent in PIS(R),
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then

girth(PIS(R)) = 3.

Proof : Let I1 and I2 be two non-comparable ideals which are adjacent

in PIS(R). Then I1 + I2 is a prime ideal in R. Since I1 and I2 are non-

comparable, I1+I2 is strictly larger than both I1 and I2 and hence I1, I2, I1+

I2 forms a triangle in PIS(R), i.e., girth(PIS(R)) = 3. □

Corollary 4.2.1 If PIS(R) is acyclic or girth(PIS(R)) > 3, then no two

non-comparable ideals of R are adjacent in PIS(R) and adjacency occurs

only in case of comparable ideals, i.e., for any edge in PIS(R), one of the

terminal vertices is a prime ideal of R.

Theorem 4.2.2 If girth(PIS(R)) = n, then there exist at least ⌊n/2⌋ dis-

tinct prime ideals in R.

Proof : By Theorem 4.2.1, if two non-comparable ideals are adjacent in

PIS(R), then girth(PIS(R)) = 3 and the sum of those two non-comparable

ideals forms a prime ideal, and hence R contains at least ⌊3/2⌋ = 1 prime

ideal. Thus we assume that girth(PIS(R)) > 3, i.e., by Corollary 4.2.1,

adjacency occurs only in case of comparable ideals. Let I1 ∼ I2 ∼ I3 ∼
· · · ∼ In ∼ I1 be a cycle of length n. First, we observe that neither I1 ⊂
I2 ⊂ I3 ⊂ · · · ⊂ In ⊂ I1 nor I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃ In ⊃ I1 can hold, as in

both the cases all the ideals will be equal. Thus, without loss of generality,

we have I1, I3 ⊂ I2 and I2 is a prime ideal. Hence we have the following two

cases:
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Case I: Let I1, I3 ⊂ I2 and I3 ⊂ I4. Then, we have I2, I4 to be prime ideals.

Case II: Let I1, I3 ⊂ I2 and I4 ⊂ I3. Then, we have I2, I3 to be prime

ideals.

In any case, we get at least 2 ideals to be prime in R among I1, I2, I3 and

I4. Continuing in this manner till In, we get atleast ⌊n/2⌋ ideals which is

prime in R. Hence, the theorem follows. □

Corollary 4.2.2 Let R has k prime ideals. Then, PIS(R) is either acyclic

or girth(PIS(R)) ≤ 2k.

Theorem 4.2.3 Let M be the set of all maximal ideals of R. Then M is

a minimal dominating set of PIS(R) and γ(PIS(R)) ≤ |M|. Moreover,

γ(PIS(R)) = 1 if and only if R is a local ring or R has exactly two maximal

ideals M1 and M2 such that M1 ∩ M2 is a non-trivial minimal ideal such

that there is no non-prime ideal properly containing M1 ∩ M2. Also, if R

has exactly two maximal ideals which does not satisfy the above condition,

then γ(PIS(R)) = 2.

Proof : Since any ideal I of R is contained in some element M of M and

I +M = M , which is a prime ideal, M dominates PIS(R). Let M ∈ M.

It is to be observed that M \ {M} does not dominate M and hence fails

to dominate PIS(R). Thus M is a minimal dominating set of PIS(R)

and γ(PIS(R)) ≤ |M|. The second part follows from Theorem 4.1.1. For

the third part, observe that γ(PIS(R)) ≤ 2. However, it cannot be 1, by

Theorem 4.1.1. Hence, γ(PIS(R)) = 2. □
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Remark 4.2.3 The inequality in previous theorem may be strict. For ex-

ample, consider PIS(Z30). It is isomorphic to C6 given by (2) ∼ (6) ∼
(3) ∼ (15) ∼ (5) ∼ (10) ∼ (2) with 3 maximal ideals (2), (3), (5). However,

domination number of the graph is 2, e.g., {(2), (15)} forms a dominating

set of PIS(Z30).

4.3 Homomorphisms of PIS(R)

In this section, we discuss some properties related to homomorphisms and

isomorphisms of PIS(R).

Proposition 4.3.1 Let φ : R → S be an onto ring homomorphism. Then

ψ : PIS(S) → PIS(R) is a graph homomorphism where ψ(I) = φ−1(I) for

any ideal I of S.

Proof : Since φ−1(I) is an ideal of R whenever I is an ideal of S, and

moreover φ is an onto ring homomorphism and I is a non-zero proper ideal

of S, the map ψ is well-defined. Let I ∼ J in PIS(S). Then I + J is a

prime ideal in S. Therefore ψ(I + J) = φ−1(I + J) = φ−1(I) + φ−1(J) is a

prime ideal in R. Thus φ−1(I) ∼ φ−1(J) in PIS(R), i.e., ψ(I) ∼ ψ(J) in

PIS(R). Hence ψ : PIS(S) → PIS(R) is a graph homomorphism. □

Corollary 4.3.2 If R and S are two isomorphic commutative rings with

unity, then PIS(R) and PIS(S) are isomorphic as graphs.

Proof : It immediately follows from Proposition 4.3.1. □
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The following example shows that there exist non-isomorphic rings whose

corresponding prime ideal sum graphs are isomorphic.

Example 4.3.1 Consider Z12 and Z18. Clearly, they are not isomorphic

as rings. However, both of their corresponding prime ideal sum graphs are

isomorphic to P4.

Theorem 4.3.1 Let φ : R → S be an onto ring homomorphism. Then

ω(PIS(S)) ≤ ω(PIS(R)).

Proof : Let M be a maximum clique in PIS(S). We claim that ψ(M) is

a clique in PIS(R), where ψ is as defined in Proposition 4.3.1. Let I1, I2

be two ideals of R in ψ(M). Then there exists ideals J1, J2 of S in M such

that ψ(J1) = I1 and ψ(J2) = I2. As M is a clique in PIS(S), J1 ∼ J2 in

PIS(S) and since ψ is a graph homomorphism, I1 ∼ I2 in PIS(R). Thus

ψ(M) is a clique in PIS(R). Also as M is a clique, |M| = |ψ(M)|. Thus,
we have ω(PIS(R)) ≥ |ψ(M)| = ω(PIS(S)). □

Theorem 4.3.2 Let R be a commutative ring with unity and I be an ideal

of R. Let PISI(R) be the subgraph of PIS(R) induced by the ideals of R

containing I. Then PISI(R) and PIS(R/I) are isomorphic as graphs.

Proof : Let us define a function φ : PISI(R) → PIS(R/I) given by

φ(J) = J/I. Clearly φ is a bijection. Now J1 ∼ J2 in PISI(R) implies that

J1+J2 is prime ideal in R containing I. Thus, J1/I+J2/I = (J1+J2)/I is a

prime ideal in PIS(R/I) and hence φ(J1) ∼ φ(J2) in PIS(R/I). Similarly,
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J1/I ∼ J2/I in PIS(R/I) implies that J1/I+J2/I = (J1+J2)/I is a prime

ideal in PIS(R/I), i.e., J1+J2 is prime ideal in R. Thus J1 ∼ J2 in PIS(R)

and as a result, φ is a graph isomorphism. □

4.4 Prime Ideal Sum Graph of a General ZPI-Ring

In this section, the prime ideal graph PIS(R) is studied for general ZPI-

rings. Moreover, the graph properties of PIS(Zn) such as diameter, girth

and domination number are studied.

Theorem 4.4.1 Let R be a general ZPI-ring which is not a field and |Ass(R)| =
1. Then PIS(R) is a single vertex graph or a star graph.

Proof : Let Ass(R) = {P}. Then 0 = P k for some k ≥ 1. Since R is not

a field, then k > 1.

Case 1: Assume that k = 2. If I is a non-zero proper ideal of R, then

0 = P 2 ⊊ I ⊆ P . Hence we conclude that I = P by [27, Theorem 39.2].

Thus the graph has a single vertex p.

Case 2: Assume that k ≥ 3. Then by Theorem 4.1.1, PIS(R), being a

local ring, has P as a universal vertex. On the other hand, any two other

ideals of R, say P i and P j with i ̸= j ̸= 1 are non-adjacent. Thus, PIS(R)

is a star graph. □

Theorem 4.4.2 Let R be a principal ideal ring which is not a field. Then,
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diam(PIS(R)) =





0, if Ass(R) = {P} and 0 = P 2

1, if Ass(R) = {P} and 0 = P 3, P 2 ̸= 0

∞, if Ass(R) = {P1, P2} and 0 = P1P2

2, otherwise

Proof : As R is a principal ideal ring, diam(PIS(R)) ≤ 2 by Theorem

4.1.4 except for Ass(R) = {P1, P2} and 0 = P1P2, where the graph is dis-

connected. Now assume that Ass(R) = {P}. If 0 = P 2, then the graph

contains a single vertex and hence has diameter 0. If 0 = P 3, P 2 ̸= 0, then

the graph is isomorphic to a path on 2 vertices and hence its diameter is 1.

For all other cases, to establish that the diameter is 2, it suffices to show

the existance of non-adjacent vertices. If |Ass(R)| = 1 and 0 = P k for some

k > 3, then the graph is a star graph by Theorem 4.4.1 and hence has

diameter 2. If |Ass(R)| ≥ 2, say P1, P2 are two distinct associated primes,

then P1 and P2 are two non-adjacent vertices. Thus the theorem follows. □

The following example shows that two associated primes can be adjacent

unless R is a principal ideal ring.

Example 4.4.1 Let R = K[x, y]/⟨x2, xy⟩ where K is a field and x,y are

indeterminates. Then, the primary decomposition of OR is ⟨x2, y⟩ = ⟨x⟩ ∩
⟨x2, xy, yn⟩ and Ass(R) = {⟨x⟩, ⟨x, y⟩}. Since ⟨x⟩ ⊂ ⟨x, y⟩, they are adjacent
vertices.
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Theorem 4.4.3 Let R be a general ZPI-ring which is not a field. Then

girth(PIS(R)) is either 3 or ∞.

Proof : If |Ass(R)| = 1, then PIS(R) is a single graph or a star graph

by Theorem 4.4.1 and so it has no cycle. Assume that |Ass(R)| ≥ 2. If

Ass(R) = {P1, P2} and 0 = P1P2, then the graph consists of two isolated

vertices. So, without loss of generality, we may assume that P α
1 is a factor

of 0 where α ≥ 2. Then P1, P
2
1 and P1P2 forms a triangle in PIS(R). Thus

girth(PIS(R)) = 3. □

Corollary 4.4.1 Let R be a general ZPI-ring which is not a field. Then

the following statements are equivalent:

(1) PIS(R) is a bipartite graph.

(2) Either Ass(R) = {P} and P 2 ̸= 0 or Ass(R) = {P1, P2} and P1P2 = 0

.

Proof : It follows from the proofs of Theorems 4.4.1 and 4.4.3. □

Theorem 4.4.4 Let R be a general ZPI-ring which is not a field. Let

0 = P1P2 · · ·Pk. , where P1, P2, . . . , Pk are distinct prime ideals of R, then

ω(PIS(R)) = k.

Proof : We note that any clique in PIS(R) can contain at most one prime

ideal and if Ii and Ij be two vertices in a clique, then Ii + Ij is prime.

We claim that any clique of size k is either of the two types, ignoring the

ordering of the primes:
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• Type - I: {I1, I2, . . . , Ik} where I1 = P1P2, I2 = P1P3, . . . , Ik−1 = P1Pk

and Ik = P1.

• Type - II: {I1, I2, . . . , Ik} where I1 = P1P2, I2 = P1P3, . . . , Ik−1 = P1Pk

and Ik = P2P3 · · ·Pk.

Proof of Claim: Let S = {I1, I2, . . . , Ik} be a clique of size k in PIS(R).

Case I: Suppose that for all Ii, there exists a common prime factor,

say P1. Then Ii = P1Ji where P1 ∤ Ji, Ji|P2 · · ·Pk, Ji and Jj are coprime

for all i, j ∈ {1, 2, . . . , k}. Since the number of Ii’s is k, therefore Ji ∈
{R,P2, P3, . . . , Pk}. Thus S is of Type - I.

Case II: Suppose that k − 1 elements of S has a common prime factor.

We assume, without loss of generality, that P1|Ii for i ∈ {1, 2, . . . , k−1} and

P1 ∤ Ik. Then Ii = P1Ji where P1 ∤ Ji and Ji|P2 · · ·Pk, for i ∈ {1, 2, . . . , k −
1}. Since P1 ∤ Ik and Ii ∼ Ik for all i ∈ {1, 2, . . . , k− 1}, Ji ̸= R. Now, since

the number of Ji’s is k − 1, which is equal to the number of prime factors

of 0 other than P1, it is clear that Ji ∈ {P2, P3, . . . , Pk}. Thus, ignoring the

order of the primes, I1 = P1P2, I2 = P1P3, . . . Ik−1 = P1Pk. Again, as Ik is

adjacent to all the other Ii’s and P1 ∤ Ik, we have Ik = P2P3 · · ·Pk. Hence

S is of Type - II.

Case III: Suppose that at most k−2 elements of S has a common prime

factor, say P1. We may assume that P1 divides I1, I2, . . . , Ik−2 and P1 does

not divide Ik−1 and Ik. Hence Ii = P1Ji where P1 ∤ Ji, Ji|P2 · · ·Pk and Ji

and Jj are coprime for i ∈ {1, 2, . . . , k − 2}. Thus each of J1, J2, . . . , Jk−2

has a distinct prime factors from the set {P2, P3, . . . Pk}. Without loss of
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generality, let P2|J1, P3|J2, . . . , Pk−1|Jk−2.

Subcase III (a): If they are equal, i.e., J1 = P2, J2 = P3, . . . Jk−2 =

Pk−1, then since Ik−1 ∼ Ii for all i ∈ {1, 2, . . . , k − 2} and P1 ∤ Ik−1, we

have Ik−1 = P2P3 · · ·Pk−1. But, by similar arguments, Ik is also equal to

P2P3 · · ·Pk−1, a contradiction.

Subcase III (b): Without loss of generality, let J1 = P2Pk, J2 =

P3, J3 = P4, . . . Jk−2 = Pk−1. Then I1 = P1P2Pk, I2 = P1P3, I3 = P1P4, . . . , Ik−2 =

P1Pk−1. Now, by using similar arguments as in Subcase III (a), we have

Ik−1, Ik ∈ {P2P3 · · ·Pk−1, P3 · · ·Pk−1Pk}. Without loss of generality, let

Ik−1 = P2P3 · · ·Pk−1 and Ik = P3 · · ·Pk−1Pk. However, in this case, Ik−1 ̸∼
Ik as Ik−1 + Ik is not a prime, a contradiction.

Similar arguments hold, if for any s < k − 2 many Ii’s share a common

factor and the rest do not. Thus Case III can not occur in a clique and

hence any clique of size k is either of Type - I or Type - II, thereby proving

the claim.

Now, suppose S is a clique of size t, which is greater than k. Then

it has a sub-clique S ′ of size k, and by the above claim, S ′ is one of the

above two types. Suppose S ′ is of Type - I, i.e., S ′ = {I1, I2, I3, . . . , Ik}
where I1 = P1P2, I2 = P1P3, . . . , Ik−1 = P1Pk and Ik = P1. Since Ij ∼ P1

for all j with k + 1 ≤ j ≤ t, we have P1|Ij, i.e, Ij = P1Jj for all j with

k+1 ≤ j ≤ t. However, since Ij = P1Jj ∼ P1Ji for all k+1 ≤ j ≤ t and for

all i = 2, 3, . . . , k. We have Pi ∤ Jj for all i ∈ {2, 3, . . . , k}. Since P 2
1 is not

a factor of 0, we have P1 ∤ Jj. Thus Jj = R, i.e., Ij = P1, a contradiction.
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Thus S ′ is not of Type - I.

Assume that S ′ is of Type - II, i.e., S ′ = {I1, I2, I3, . . . , Ik} where I1 =

P1P2, I2 = P1P3, . . . , Ik−1 = P1Pk and Ik = P2P3 · · ·Pk. If P1|Ik+1, by

similar arguments as above, we get Ik+1 = P1, a contradiction, as Ik+1 ∼ Ik.

Suppose, Pi|Ik+1 for some i ∈ {2, 3, . . . , k}, say P2. Then Ik+1 = P2Jk+1.

Since Ik+1 ∼ Ik = P2P3 · · ·Pk, we have P3, P4, . . . , Pk ∤ Jk+1. Since P
2
2 is not

a factor of 0, we have P2 ∤ Jk+1. Also we have shown that P1 ∤ Ik+1. Hence

Jk+1 = R and so Ik+1 = P2. But this implies that Ik+1 ̸∼ I2, a contradiction.

Thus S ′ is not of Type - II.

Thus, there does not exist any clique of size greater than k and hence

ω(PIS(R)) is k. □

Theorem 4.4.5 Let R be a general ZPI-ring which is not a field. Let 0 =

P 1
α1P 2

α2 · · ·P k
αk, where P1, P2, . . . , Pk are distinct prime ideals of R and

αi ≥ 2 for at least one i ∈ {1, 2, . . . , k}, then ω(PIS(R)) = k + 1.

Proof : We claim that any clique of size k+1 is of the following type where

α′
i denotes a positive integer less than or equal to αi for each i ∈ {1, 2, ..., k}

ignoring the ordering of the primes:

Type - III: {I1, I2, . . . , Ik, Ik+1} where I1 = P1P
α′
2

2 , I2 = P1P
α′
3

3 , . . . , Ik−1 =

P1P k
α′
k , Ik = P1 and Ik+1 =P 1

α′
1 for some α′

1 ≥ 2.

Proof of Claim: Let S = {I1, I2, . . . , Ik, Ik+1} be a clique of size k + 1 in

PIS(R).

Case I: Assume that there is no common prime factor which divides all

Ii’s. We may assume that P1 divides I1, I2, . . . , Ik and P1 does not divide
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Ik+1. Then Ii = P
αti

′
1 Ji where P1 ∤ Ji, Ji|P 2

α2 · · ·P k
αk , α′

ti
≤ α1, Ji and Jj

are coprime for all i, j ∈ {1, . . . , k}. Hence Ji ∈ {R,P 2
α′
2, · · · ,P k

α′
k} where

0 < α′
i ≤ αi for each i. Observe that if P 2

1 divides both Ii and Ij for some

i, j ∈ {1, 2, ..., k}, we have Ii ≁ Ij, a contradiction. Thus P 2
1 |Ii holds for at

most one i ∈ {1, ..., k}. Thus, ignoring the order of the primes, we conclude

the following subcases:

Subcase I (a): Let P 2
1 |Ik. Then I1 = P1P 2

α′
2, I2 = P1P

α′
3

3 , · · · , Ik−1 =

P1P k
αk′, Ik = P

α′
1

1 for some α′
1 ≥ 2. Since Ik+1 ∼ Ii = P1P i+1

α′
i+1 for all

i ∈ {1, . . . , k − 1} and P1 ∤ Ik+1, we have Ik+1 = P2P3 · · ·Pk. On the other

hand, since Ik = P
α′
1

1 , we have Ik ∼ Ik+1 = P2P3 · · ·Pk, a contradiction.

Subcase I (b): Let P 2
1 ∤ Ik and P 2

1 |Ii for some i ∈ {1, ..., k− 1}, say I1.

Then I1 = P
α′
1

1 P
α′
2

2 , I2 = P1P
α′
3

3 , · · · , Ik = P1P k
α′
k , Ik =P 1 for some α′

1 ≥ 2.

Similar to Subcase I (a), we conclude again the same contradiction.

Subcase I (c): Let P 2
1 ∤ Ii for all i ∈ {1, ..., k + 1}. Then I1 =

P1P 2
α′
2, I2 = P1P

α′
3

3 , · · · , Ik−1 = P1P
α′
k

k , Ik =P 1. Similar to Subcase I (a), we

conclude again the same contradiction.

Similar arguments hold, if any s(< k) many Ii’s share a common prime

factor and the rest do not. Thus, we assume that all the elements of S

has a common prime factor. In Case II and III, we show that this common

prime factor is one of the primes Pi of which the power αi ≥ 2. Since αi ≥ 2

for at least one i ∈ {1, 2, . . . , k}, without loss of generality, we assume that

α1 ≥ 2.

Case II: Assume that αi = 1 and Pi is a common prime factor of S,
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say P2. Then Ii = P2Ji where P2 ∤ Ji, Ji|P 1
α1P3

α3 · · ·P k
αk , Ji and Jj are

coprime, for i, j ∈ {1, 2, . . . , k + 1}. Thus Ji ∈ {R,P 1
α′
1,P

α′
3

3 , · · · ,P k
αk′} for

i ∈ {1, 2, . . . , k}; and so, ignoring the order of the primes, I1 = P2P 1
α′
1,

I2 = P2P 3
α′
3, ..., Ik−1 = P2P k

α′
k , Ik = P2. Since Ii ∼ Ik+1 = P2Jk+1 for all i ∈

{1, 2, ..., k}, Pi ∤ Jk+1 for all i ∈ {1, 3, . . . , k}. Since Jk+1|P1
α1P3

α3 · · ·Pk
αk ,

we get Jk+1 = R; and so Ik+1 = Ik, a contradiction.

Case III: Suppose that αi ≥ 2 and Pi is a common prime factor, say

P1. Then Ii + Ij = P1 for all i, j ∈ {1, 2, . . . , k + 1}. Hence Ii = P1Ji where

Ji|P 2
α2 · · ·P k

αk , Ji and Jj coprime for all i, j ∈ {1, 2, . . . , k + 1}. Since the

number of Ji’s is k + 1, therefore, Ji ∈ {R,P 1
α′
1,P 2

α′
2, · · · ,P k

α′
k} for each

i ∈ {1, ..., k}. Thus, ignoring the order of the primes, I1 = P1P
α′
2

2 , . . . ,

Ik−1 = P1P k
α′
k , Ik = P1 and Ik+1 =P 1

α′
1. Thus S is of Type - III.

Hence, the claim is proved, i.e., any clique of size k + 1 is of Type - III.

Now, suppose S is a clique of size t, which is greater than k+1. Then it has

a sub-clique S ′ of size k+1, and by the above claim, S ′ is of Type - III, i.e.,

S ′ = {I1, I2, . . . , Ik, Ik+1} where I1 = P1P
α′
2

2 , . . . , Ik−1 = P1P k
α′
k , Ik = P1

and Ik+1 =P 1
α′
1 for some α′

1 ≥ 2. Since Ik+2 ∼ Ik and Ik+2 ∼ Ik+1, we have

P1|Ik+2 but P
2
1 ∤ Ik+2. Then Ik+2 = P1Jk+2 such that Jk+2 is not divisible by

all primes P1, ..., Pk as Ik+2 ∼ Ii for all i ∈ {1, 2, . . . , k− 1}. Thus, Jk+2 = R

which implies Ik+2 = Ik, a contradiction. Consequently, there does not exist

any clique of size greater than k + 1 and hence ω(PIS(R)) = k + 1. □

In a view of Theorems 4.4.4 and 4.4.5, we conclude the following result.

Corollary 4.4.2 Let n = p1
α1p2

α2 · · · pkαk where p1, p2, . . . , pk are distinct

106



prime integers. Then ω(PIS(Zn)) =





k, if n is square-free

k + 1, else

Theorem 4.4.6 Let J be a general ZPI-ring which is not a field. Then,

(1) ω,χ ≥ |Ass(R)|.

(2) γ ≤ |Ass(R)|.

Proof : Assume that 0 = P α1
1 P α2

2 · · ·P αk

k , where P1, P2, . . . , Pk are associ-

ated primes.

(1) Consider the set of ideals A = {P1, P1P2, . . . , P1Pk}. As P1 + P1Pi =

P1 = P1Pi+P1Pj for i ̸= j, A is a clique. Thus, ω ≥ k. Now, as χ ≥ ω

we have χ ≥ k.

(2) Consider the set of ideals S = {P1, P2, . . . , Pk}. We claim that S is a

dominating set. Let I be a non-trivial ideal of R. Then, I has a prime

factor, say Pi, and hence I + Pi = Pi; i.e. I is adjacent to Pi. Thus, S

dominates PIS(R).

□

Corollary 4.4.3 Let n be a positive integer that is not prime. Then, the

following statements hold:

(1) PIS(Zn) is a star graph if and only if n = pk with k ≥ 3.

(2) The diameter of PIS(Zn) is 2 unless n = p2, p3, pq. For n = p2, p3, pq

the diameter of PIS(Zn) is 0, 1 and ∞, respectively.

107



(3) girth(PIS(Zn)) = 3 unless n = pk or pq.

(4) PIS(Zn) bipartite if and only if n = pk or pq.

(5) If n = p1
α1p2

α2 · · · pkαk, then ω(PIS(Zn)),χ(PIS(Zn)) ≥ k and

γ(PIS(Zn)) ≤ k.
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