Chapter 4

Prime Ideal Sum Graph of a Commutative Ring

Recently, investigation of graphs associated to algebraic structures has become very common and investigating graph theoretic properties of rings attracted many researchers. So, many research papers has been emerged in which connections between algebraic properties of a ring and the graphtheoretic properties of its graph are studied (see for instance $[3,10,13,17]$ and [31])

It is known that behavior of ideals in a ring effects the structure of the ring and so ideals play crucial roles in the study of ring constructions. That is why it is useful to associate graphs to ideals of a ring as done for instance in $[5,4,20]$ or in [35]. Studies on these topics in the literature motivate us to define a new graph containing ideals as vertices. So, the main purpose of this chapter is to introduce and study prime ideal sum graph associated with a ring.

Throughout, R is a commutative ring with unity and as usual the rings of integers and integers modulo n will be denoted by \mathbb{Z} and \mathbb{Z}_{n}, respectively. A prime ideal \mathfrak{p} is said to be an associated prime of a commutative Noetherian ring R, if R has a non-zero element x such that $\mathfrak{p}=\operatorname{Ann}(x) . \operatorname{By} \operatorname{Ass}(R)$ and $\operatorname{Spec}(R)$ we mean the sets of all associated prime and prime ideals of R, respectively. A ring R is said to be a general ZPI - ring if each of its ideal can be expressed as a finite direct product of prime ideals of R. Dedekind domians are indecomposable general ZPI-rings. A ring R is said to be local if it has a unique maximal left ideal and is said to be reduced if it has no non-zero nilpotent element. The set of all nilpotent elements of R is denoted by $\sqrt{0}$. For any undefined notation or terminology in ring theory, we refer the reader to $[27,29]$ and [42].

The main goal of this chapter is to introduce and study some of the basic properties of the prime ideal sum graph $\operatorname{PIS}(R)$ of $R[38]$. The prime ideal sum graph of R is a graph whose vertices are non-zero proper ideals of R and two distinct vertices I and J are adjacent if and only if $I+J$ is a prime ideal of R. To avoid null graphs, throughout this chapter, we take R to be a commutative ring with unity with at least one non-zero proper ideal. We investigate the graph properties of $P I S(R)$ such as diameter, girth, domination number, etc. Among many results, we give in this section a necessary and sufficient condition for the completeness and connectedness of $P I S(R)$ (Theorems 4.1 .3 and 4.1.4). In Section 4.4, we characterize $P I S(R)$ for a general ZPI-ring. We determine in this section diameter and
girth of $\operatorname{PIS}(R)$ under some assumptions on R (Theorems 4.4.2 and 4.4.3) and the idea of bipartition for $\operatorname{PIS}(R)$ is also analyzed (Corollary 4.4.1).

4.1 Connectedness of PIS(R)

In this section we study some of the basic properties of prime ideal sum graph $\operatorname{PIS}(R)$ of R like having universal and isolated vertices, completeness, connectedness, diameter, girth etc.

Theorem 4.1.1 Let R be a ring. PIS(R) has a universal vertex if and only if one of the two statements hold:

1. R is a local ring.
2. R has exactly two maximal ideals M_{1} and M_{2} such that $M_{1} \cap M_{2}$ is a non-trivial minimal ideal and that there is no non-prime ideal properly containing $M_{1} \cap M_{2}$.

Proof : Let (1) hold, i.e., R be a local ring with unique maximal ideal M. Then for any ideal I of R, we have $I+M=M$, which is a prime ideal and hence $I \sim M$. Thus M is a universal vertex.

Let (2) hold and $I=M_{1} \cap M_{2}$. Suppose J is a non-trivial ideal other than I and without loss of generality, let $J \subseteq M_{1}$. As I is a minimal ideal, it follows that $I \subsetneq I+J \subseteq M_{1}$. Now, from the given condition $I+J$ is a prime ideal and hence I is a universal vertex.

Conversely, let $\operatorname{PIS}(R)$ have a universal vertex, say I. If R has a unique maximal ideal, the proof is done. Now, assume that R has at least three
maximal ideals, say M_{1}, M_{2} and M_{3}. Note that I can not be a maximal ideal as two distinct maximal ideals are not adjacent. As I is not a maximal ideal, then it is contained in some maximal ideals, say M_{1}, i.e., $I \subsetneq M_{1}$. If possible, let $I \not \subset M_{2}$. Then by maximality of $M_{2}, I+M_{2}=R$. Hence $I \nsim M_{2}$, a contradiction. Thus $I \subseteq M_{1} \cap M_{2} \cap M_{3}$. Now, two cases may occur.

Case 1: Let $I \neq M_{1} \cap M_{2} \cap M_{3}$. In this case, as $I+M_{1} \cap M_{2} \cap M_{3}=$ $M_{1} \cap M_{2} \cap M_{3}$ and I is a universal vertex in $\operatorname{PIS}(R), M_{1} \cap M_{2} \cap M_{3}$ is a prime ideal in R. But $M_{1} M_{2} M_{3} \subseteq M_{1} \cap M_{2} \cap M_{3}$ implies that $M_{1}=M_{2}=M_{3}$, a contradiction.

Case 2: Let $I=M_{1} \cap M_{2} \cap M_{3}$. Let $J=M_{1} \cap M_{2}$. Since intersection of two maximal ideals can not be prime, $I+J=J$ is not a prime ideal, i.e., $I \nsim J$, which contradicts with our assumption that I is a universal vertex. Therefore, R has exactly two maximal ideals, say M_{1} and M_{2}. By the same argument above, we conclude that $I=M_{1} \cap M_{2}$.

Now, we show that I is a minimal ideal. If possible, let there exists a non-trivial ideal $J \subsetneq I=M_{1} \cap M_{2}$. Then, as I is a universal vertex, $J+I=I=M_{1} \cap M_{2}$ is prime, a contradiction. Thus I is a minimal ideal.

If possible, let J be a non-prime ideal such that $I=M_{1} \cap M_{2} \subsetneq J \subsetneq M_{i}$, where $i=1$ or 2 . But, this implies $I+J=J$, a non-prime ideal and hence $I \nsim J$, a contradiction. Thus there does not exist such ideal J.

Remark 4.1.1 Let R be a ring which is not reduced. Then $\sqrt{0}$ is adjacent to each element of $\operatorname{Spec}(R)$.

Please note that if R is a reduced ring then $\sqrt{0}$ is not a vertex of $P I S(R)$. So, the assumption R is not reduced in Remark 4.1.1 is not superfluous. In the following, we give some equivalent statements for that $\sqrt{0}$ is a universal vertex of $P I S(R)$.

Corollary 4.1.2 Let R be a non-reduced ring. Then the following statements are equivalent:
(1) Every element of R is either nilpotent or unit.
(2) R has a unique prime ideal.
(3) $(R, \sqrt{0})$ is a local ring.
(4) $\sqrt{0}$ is a universal vertex of $\operatorname{PIS}(R)$.

Proof : $(1) \Rightarrow(2)$ It is clear by [42, 3.51 Exercise].
$(2) \Rightarrow(3)$ If R has a unique prime ideal, then it is $\sqrt{0}$ which is also a unique maximal ideal.
$(3) \Leftrightarrow(4)$ It follows from Theorem 4.1.1.
$(3) \Rightarrow(1)$ Let $(R, \sqrt{0})$ be a local ring. Suppose that $a \in R$ is non-nilpotent. Since $a \notin \sqrt{0}$ and $\sqrt{0}$ is a unique maximal ideal then a is unit.

Theorem 4.1.2 An ideal I of R is an isolated vertex in $P I S(R)$ if and only if I is a maximal as well as minimal ideal of R.

Proof : Let I be an isolated vertex in $P I S(R)$. If I is not a maximal ideal, then it is properly contained in a maximal ideal M and $I+M=M$. Thus
$I \sim M$ in $\operatorname{PIS}(R)$, a contradiction, and so I is a maximal ideal. If I is not a minimal ideal, then there exists an ideal J of R such that $\{0\} \subsetneq J \subsetneq I$ and we have $I+J=I$, which is a prime ideal. Thus $I \sim J$, a contradiction, and so I is a minimal ideal of R.

Conversely, let I be a maximal as well as minimal ideal of R. If possible, assume that I is not isolated in $P I S(R)$. Then there exists a non-zero proper ideal J of R other than I such that $I+J$ is a prime ideal. If $J \not \subset I$, then as I is maximal, we have $I+J=R$, which is not prime. On the other hand if $J \subseteq I$, then by minimality of I, we have $J=\{0\}$ or $I=J$, a contradiction. Thus such an ideal J does not exist and hence I is an isolated vertex in $P I S(R)$.

Next, we characterize rings whose prime ideal sum graph is complete.

Theorem 4.1.3 PIS(R) is complete if and only if R is a local ring and every proper non-prime ideal is a minimal ideal.

Proof : Let $P I S(R)$ be a complete graph. Then $P I S(R)$ has a universal vertex and hence either of the two conditions holds by Theorem 4.1.1. Since two distinct maximal ideals can not be adjacent, R can not have two maximal ideals. Hence (1) in Theorem 4.1.1 holds. Let I be a non-zero proper ideal of R which is not prime. If possible, there exists an ideal J of R such that $\{0\} \subsetneq J \subsetneq I$, then $I+J=I$. Since I is not a prime ideal, $I \nsim J$, a contradiction to the completeness of $P I S(R)$. Thus every proper non-prime ideal is a minimal ideal.

Conversely, let R be a local ring with unique maximal ideal, say M, and every proper non-prime ideal be a minimal ideal. Let I_{1} and I_{2} be two distinct non-zero proper ideals of R. Then $I_{1}, I_{2} \subseteq M$. Suppose $I_{1}+I_{2}=$ $I_{3} \subseteq M$ is not prime. Then by given condition, I_{3} is a minimal ideal. But $I_{1}, I_{2} \subseteq I_{3}$ and I_{1}, I_{2} are non-zero ideal. Thus $I_{1}=I_{2}=I_{3}$, a contradiction. Thus $I_{1}+I_{2}$ is prime and hence $I_{1} \sim I_{2}$. Thus $\operatorname{PIS}(R)$ is complete.

Theorem 4.1.4 Let R be a ring. Then $\operatorname{PIS}(R)$ is connected if and only if R is not a direct sum of two fields. If PIS (R) is connected, then $\operatorname{diam}(P I S(R)) \leq$ 4. Moreover, if R is a principal ideal ring, then $\operatorname{diam}(P I S(R)) \leq 2$.

Proof : Let I_{1}, I_{2} be two non-zero ideals in R. If $I_{1}+I_{2}$ is a prime ideal, then $I_{1} \sim I_{2}$ in $\operatorname{PIS}(R)$. Otherwise, assume that $I_{1}+I_{2}$ is not prime. Since R is a ring with unity, both I_{1} and I_{2} are contained in some maximal ideals of R. If they are contained in the same maximal ideal, say M, then we have $I_{1} \sim M \sim I_{2}$, as maximal ideals are prime and hence $d\left(I_{1}, I_{2}\right)=2$. Thus we assume that $I_{1} \subset M_{1}, I_{2} \subset M_{2}$ and $M_{1} \neq M_{2}$ are two maximal ideals in R. Then we have a path of length 4 given by $I_{1} \sim M_{1} \sim M_{1} \cap M_{2} \sim M_{2} \sim I_{2}$, unless $M_{1} \cap M_{2}=\{0\}$. Thus $d\left(I_{1}, I_{2}\right) \leq 4$ and hence $\operatorname{diam}(P I S(R)) \leq 4$. However if $M_{1} \cap M_{2}=\{0\}$, we have $R \cong$ $R /\{0\} \cong R /\left(M_{1} \cap M_{2}\right) \cong R / M_{1} \oplus R / M_{2}$. As M_{1}, M_{2} are maximal ideals in $R, R / M_{i}$ is a field. Thus R is a direct sum of two fields.

Conversely, if R is direct sum of two fields F_{1} and F_{2}, the only non-trivial ideals of R are $\{0\} \times F_{2}$ and $F_{1} \times\{0\}$. In this case, $\operatorname{PIS}(R)$ consists of two
isolated vertices and hence it is not connected. Thus the first part of the theorem is proved.

For the second part, when R is a principal ideal ring, if I_{1} and I_{2} are contained in same maximal ideal of R, then as it is shown in previous case, we have $d\left(I_{1}, I_{2}\right) \leq 2$. Thus, we assume that $I_{1} \subset M_{1}, I_{2} \subset M_{2}$ and $M_{1} \neq M_{2}$ are two maximal ideals in R. Since R is a principal ideal ring, let $I_{1}=(a), I_{2}=(b), M_{1}=(x)$ and $M_{2}=(y)$, for some $a, b, x, y \in R$. First, we prove that $x y \neq 0$. Because if $x y=0$, then $\{0\}=M_{1} M_{2}=$ $M_{1} \cap M_{2}$, which implies that R is a direct sum of two fields and hence $\operatorname{PIS}(R)$ is disconnected, a contradiction. Thus $x y \neq 0$. Let $J=(x y)$. Clearly $I_{1}+J \subseteq M_{1}$. On the other hand, since $I_{1} \not \subset M_{2}$, by maximality of M_{2}, we have $I_{1}+M_{2}=R$, i.e., $(a)+(y)=R$. Since $1 \in R$, there exist $u, v \in R$ such that $a u+v y=1$ which implies $a u x+v x y=x$. Then $(a)+(x y)=I_{1}+J$. Thus, $M_{1} \subseteq I_{1}+J$ and hence $I_{1}+J=M_{1}$, which is a prime ideal and $I_{1} \sim J$ in $\operatorname{PIS}(R)$. Similarly, it can be shown that $I_{2}+J=M_{2}$ and hence $I_{2} \sim J$ in $\operatorname{PIS}(R)$. Thus $I_{1} \sim J \sim I_{2}, d\left(I_{1}, I_{2}\right) \leq 2$ and hence the theorem follows.

Corollary 4.1.3 If R is an integral domain, then $\operatorname{diam}(P I S(R)) \leq 4$.

4.2 Girth and Domination Number of $P I S(R)$

In this section, we study the girth and domination number of $\operatorname{PIS}(R)$.
Theorem 4.2.1 If any two non-comparable ideals are adjacent in $\operatorname{PIS}(R)$,
then
$\operatorname{girth}(P I S(R))=3$.

Proof : Let I_{1} and I_{2} be two non-comparable ideals which are adjacent in $\operatorname{PIS}(R)$. Then $I_{1}+I_{2}$ is a prime ideal in R. Since I_{1} and I_{2} are noncomparable, $I_{1}+I_{2}$ is strictly larger than both I_{1} and I_{2} and hence $I_{1}, I_{2}, I_{1}+$ I_{2} forms a triangle in $P I S(R)$, i.e., $\operatorname{girth}(P I S(R))=3$.

Corollary 4.2.1 If $P I S(R)$ is acyclic or $\operatorname{girth}(P I S(R))>3$, then no two non-comparable ideals of R are adjacent in $\operatorname{PIS}(R)$ and adjacency occurs only in case of comparable ideals, i.e., for any edge in $\operatorname{PIS}(R)$, one of the terminal vertices is a prime ideal of R.

Theorem 4.2.2 If girth $(P I S(R))=n$, then there exist at least $\lfloor n / 2\rfloor$ distinct prime ideals in R.

Proof : By Theorem 4.2.1, if two non-comparable ideals are adjacent in $P I S(R)$, then $\operatorname{girth}(P I S(R))=3$ and the sum of those two non-comparable ideals forms a prime ideal, and hence R contains at least $\lfloor 3 / 2\rfloor=1$ prime ideal. Thus we assume that $\operatorname{girth}(P I S(R))>3$, i.e., by Corollary 4.2.1, adjacency occurs only in case of comparable ideals. Let $I_{1} \sim I_{2} \sim I_{3} \sim$ $\cdots \sim I_{n} \sim I_{1}$ be a cycle of length n. First, we observe that neither $I_{1} \subset$ $I_{2} \subset I_{3} \subset \cdots \subset I_{n} \subset I_{1}$ nor $I_{1} \supset I_{2} \supset I_{3} \supset \cdots \supset I_{n} \supset I_{1}$ can hold, as in both the cases all the ideals will be equal. Thus, without loss of generality, we have $I_{1}, I_{3} \subset I_{2}$ and I_{2} is a prime ideal. Hence we have the following two cases:

Case I: Let $I_{1}, I_{3} \subset I_{2}$ and $I_{3} \subset I_{4}$. Then, we have I_{2}, I_{4} to be prime ideals. Case II: Let $I_{1}, I_{3} \subset I_{2}$ and $I_{4} \subset I_{3}$. Then, we have I_{2}, I_{3} to be prime ideals.

In any case, we get at least 2 ideals to be prime in R among I_{1}, I_{2}, I_{3} and I_{4}. Continuing in this manner till I_{n}, we get atleast $\lfloor n / 2\rfloor$ ideals which is prime in R. Hence, the theorem follows.

Corollary 4.2.2 Let R has k prime ideals. Then, $\operatorname{PIS}(R)$ is either acyclic or $\operatorname{girth}(P I S(R)) \leq 2 k$.

Theorem 4.2.3 Let \mathcal{M} be the set of all maximal ideals of R. Then \mathcal{M} is a minimal dominating set of $P I S(R)$ and $\gamma(P I S(R)) \leq|\mathcal{M}|$. Moreover, $\gamma(P I S(R))=1$ if and only if R is a local ring or R has exactly two maximal ideals M_{1} and M_{2} such that $M_{1} \cap M_{2}$ is a non-trivial minimal ideal such that there is no non-prime ideal properly containing $M_{1} \cap M_{2}$. Also, if R has exactly two maximal ideals which does not satisfy the above condition, then $\gamma(P I S(R))=2$.

Proof : Since any ideal I of R is contained in some element M of \mathcal{M} and $I+M=M$, which is a prime ideal, \mathcal{M} dominates $\operatorname{PIS}(R)$. Let $M \in \mathcal{M}$. It is to be observed that $\mathcal{M} \backslash\{M\}$ does not dominate M and hence fails to dominate $\operatorname{PIS}(R)$. Thus \mathcal{M} is a minimal dominating set of $\operatorname{PIS}(R)$ and $\gamma(P I S(R)) \leq|\mathcal{M}|$. The second part follows from Theorem 4.1.1. For the third part, observe that $\gamma(P I S(R)) \leq 2$. However, it cannot be 1 , by Theorem 4.1.1. Hence, $\gamma(P I S(R))=2$.

Remark 4.2.3 The inequality in previous theorem may be strict. For example, consider $\operatorname{PIS}\left(\mathbb{Z}_{30}\right)$. It is isomorphic to C_{6} given by $(2) \sim(6) \sim$ $(3) \sim(15) \sim(5) \sim(10) \sim(2)$ with 3 maximal ideals $(2),(3),(5)$. However, domination number of the graph is 2, e.g., $\{(2),(15)\}$ forms a dominating set of $P I S\left(\mathbb{Z}_{30}\right)$.

4.3 Homomorphisms of PIS(R)

In this section, we discuss some properties related to homomorphisms and isomorphisms of $P I S(R)$.

Proposition 4.3.1 Let $\varphi: R \rightarrow S$ be an onto ring homomorphism. Then $\psi: \operatorname{PIS}(S) \rightarrow P I S(R)$ is a graph homomorphism where $\psi(I)=\varphi^{-1}(I)$ for any ideal I of S.

Proof : Since $\varphi^{-1}(I)$ is an ideal of R whenever I is an ideal of S, and moreover φ is an onto ring homomorphism and I is a non-zero proper ideal of S, the map ψ is well-defined. Let $I \sim J$ in $P I S(S)$. Then $I+J$ is a prime ideal in S. Therefore $\psi(I+J)=\varphi^{-1}(I+J)=\varphi^{-1}(I)+\varphi^{-1}(J)$ is a prime ideal in R. Thus $\varphi^{-1}(I) \sim \varphi^{-1}(J)$ in $P I S(R)$, i.e., $\psi(I) \sim \psi(J)$ in $P I S(R)$. Hence $\psi: P I S(S) \rightarrow P I S(R)$ is a graph homomorphism.

Corollary 4.3.2 If R and S are two isomorphic commutative rings with unity, then $\operatorname{PIS}(R)$ and $P I S(S)$ are isomorphic as graphs.

Proof : It immediately follows from Proposition 4.3.1.

The following example shows that there exist non-isomorphic rings whose corresponding prime ideal sum graphs are isomorphic.

Example 4.3.1 Consider \mathbb{Z}_{12} and \mathbb{Z}_{18}. Clearly, they are not isomorphic as rings. However, both of their corresponding prime ideal sum graphs are isomorphic to P_{4}.

Theorem 4.3.1 Let $\varphi: R \rightarrow S$ be an onto ring homomorphism. Then $\omega(P I S(S)) \leq \omega(P I S(R))$.

Proof : Let \mathcal{M} be a maximum clique in $P I S(S)$. We claim that $\psi(\mathcal{M})$ is a clique in $\operatorname{PIS}(R)$, where ψ is as defined in Proposition 4.3.1. Let I_{1}, I_{2} be two ideals of R in $\psi(\mathcal{M})$. Then there exists ideals J_{1}, J_{2} of S in \mathcal{M} such that $\psi\left(J_{1}\right)=I_{1}$ and $\psi\left(J_{2}\right)=I_{2}$. As \mathcal{M} is a clique in $\operatorname{PIS}(S), J_{1} \sim J_{2}$ in $\operatorname{PIS}(S)$ and since ψ is a graph homomorphism, $I_{1} \sim I_{2}$ in $\operatorname{PIS}(R)$. Thus $\psi(\mathcal{M})$ is a clique in $P I S(R)$. Also as \mathcal{M} is a clique, $|\mathcal{M}|=|\psi(\mathcal{M})|$. Thus, we have $\omega(P I S(R)) \geq|\psi(\mathcal{M})|=\omega(P I S(S))$.

Theorem 4.3.2 Let R be a commutative ring with unity and I be an ideal of R. Let $P I S_{I}(R)$ be the subgraph of $P I S(R)$ induced by the ideals of R containing I. Then $P I S_{I}(R)$ and $P I S(R / I)$ are isomorphic as graphs.

Proof : Let us define a function $\varphi: P I S_{I}(R) \rightarrow P I S(R / I)$ given by $\varphi(J)=J / I$. Clearly φ is a bijection. Now $J_{1} \sim J_{2}$ in $P I S_{I}(R)$ implies that $J_{1}+J_{2}$ is prime ideal in R containing I. Thus, $J_{1} / I+J_{2} / I=\left(J_{1}+J_{2}\right) / I$ is a prime ideal in $P I S(R / I)$ and hence $\varphi\left(J_{1}\right) \sim \varphi\left(J_{2}\right)$ in $P I S(R / I)$. Similarly,
$J_{1} / I \sim J_{2} / I$ in $P I S(R / I)$ implies that $J_{1} / I+J_{2} / I=\left(J_{1}+J_{2}\right) / I$ is a prime ideal in $\operatorname{PIS}(R / I)$, i.e., $J_{1}+J_{2}$ is prime ideal in R. Thus $J_{1} \sim J_{2}$ in $\operatorname{PIS}(R)$ and as a result, φ is a graph isomorphism.

4.4 Prime Ideal Sum Graph of a General ZPI-Ring

In this section, the prime ideal graph $\operatorname{PIS}(R)$ is studied for general ZPIrings. Moreover, the graph properties of $\operatorname{PIS}\left(\mathbb{Z}_{n}\right)$ such as diameter, girth and domination number are studied.

Theorem 4.4.1 Let R be a general ZPI-ring which is not a field and $|\operatorname{Ass}(R)|=$ 1. Then $P I S(R)$ is a single vertex graph or a star graph.

Proof : Let $\operatorname{Ass}(R)=\{P\}$. Then $0=P^{k}$ for some $k \geq 1$. Since R is not a field, then $k>1$.

Case 1: Assume that $k=2$. If I is a non-zero proper ideal of R, then $0=P^{2} \subsetneq I \subseteq P$. Hence we conclude that $I=P$ by [27, Theorem 39.2]. Thus the graph has a single vertex p.

Case 2: Assume that $k \geq 3$. Then by Theorem 4.1.1, $\operatorname{PIS}(R)$, being a local ring, has P as a universal vertex. On the other hand, any two other ideals of R, say P^{i} and P^{j} with $i \neq j \neq 1$ are non-adjacent. Thus, $P I S(R)$ is a star graph.

Theorem 4.4.2 Let R be a principal ideal ring which is not a field. Then,

$$
\operatorname{diam}(P I S(R))= \begin{cases}0, & \text { if } \operatorname{Ass}(R)=\{P\} \text { and } 0=P^{2} \\ 1, & \text { if } \operatorname{Ass}(R)=\{P\} \text { and } 0=P^{3}, P^{2} \neq 0 \\ \infty, & \text { if } \operatorname{Ass}(R)=\left\{P_{1}, P_{2}\right\} \text { and } 0=P_{1} P_{2} \\ 2, & \text { otherwise }\end{cases}
$$

Proof : As R is a principal ideal ring, $\operatorname{diam}(\operatorname{PIS}(R)) \leq 2$ by Theorem 4.1.4 except for $\operatorname{Ass}(R)=\left\{P_{1}, P_{2}\right\}$ and $0=P_{1} P_{2}$, where the graph is disconnected. Now assume that $\operatorname{Ass}(R)=\{P\}$. If $0=P^{2}$, then the graph contains a single vertex and hence has diameter 0 . If $0=P^{3}, P^{2} \neq 0$, then the graph is isomorphic to a path on 2 vertices and hence its diameter is 1 . For all other cases, to establish that the diameter is 2, it suffices to show the existance of non-adjacent vertices. If $|\operatorname{Ass}(R)|=1$ and $0=P^{k}$ for some $k>3$, then the graph is a star graph by Theorem 4.4.1 and hence has diameter 2. If $|\operatorname{Ass}(R)| \geq 2$, say P_{1}, P_{2} are two distinct associated primes, then P_{1} and P_{2} are two non-adjacent vertices. Thus the theorem follows.

The following example shows that two associated primes can be adjacent unless R is a principal ideal ring.

Example 4.4.1 Let $R=K[x, y] /\left\langle x^{2}, x y\right\rangle$ where K is a field and x, y are indeterminates. Then, the primary decomposition of O_{R} is $\left\langle x^{2}, y\right\rangle=\langle x\rangle \cap$ $\left\langle x^{2}, x y, y^{n}\right\rangle$ and $\operatorname{Ass}(R)=\{\langle x\rangle,\langle x, y\rangle\}$. Since $\langle x\rangle \subset\langle x, y\rangle$, they are adjacent vertices.

Theorem 4.4.3 Let R be a general ZPI-ring which is not a field. Then $\operatorname{girth}(P I S(R))$ is either 3 or ∞.

Proof : If $|\operatorname{Ass}(R)|=1$, then $P I S(R)$ is a single graph or a star graph by Theorem 4.4.1 and so it has no cycle. Assume that $|\operatorname{Ass}(R)| \geq 2$. If $\operatorname{Ass}(R)=\left\{P_{1}, P_{2}\right\}$ and $0=P_{1} P_{2}$, then the graph consists of two isolated vertices. So, without loss of generality, we may assume that P_{1}^{α} is a factor of 0 where $\alpha \geq 2$. Then P_{1}, P_{1}^{2} and $P_{1} P_{2}$ forms a triangle in $P I S(R)$. Thus $\operatorname{girth}(P I S(R))=3$.

Corollary 4.4.1 Let R be a general ZPI-ring which is not a field. Then the following statements are equivalent:
(1) $\operatorname{PIS}(R)$ is a bipartite graph.
(2) Either $\operatorname{Ass}(R)=\{P\}$ and $P^{2} \neq 0$ or $\operatorname{Ass}(R)=\left\{P_{1}, P_{2}\right\}$ and $P_{1} P_{2}=0$

Proof : It follows from the proofs of Theorems 4.4.1 and 4.4.3.

Theorem 4.4.4 Let R be a general ZPI-ring which is not a field. Let $0=P_{1} P_{2} \cdots P_{k}$., where $P_{1}, P_{2}, \ldots, P_{k}$ are distinct prime ideals of R, then $\omega(P I S(R))=k$.

Proof : We note that any clique in $\operatorname{PIS}(R)$ can contain at most one prime ideal and if I_{i} and I_{j} be two vertices in a clique, then $I_{i}+I_{j}$ is prime. We claim that any clique of size k is either of the two types, ignoring the ordering of the primes:

- Type - I: $\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ where $I_{1}=P_{1} P_{2}, I_{2}=P_{1} P_{3}, \ldots, I_{k-1}=P_{1} P_{k}$ and $I_{k}=P_{1}$.
- Type - II: $\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ where $I_{1}=P_{1} P_{2}, I_{2}=P_{1} P_{3}, \ldots, I_{k-1}=P_{1} P_{k}$ and $I_{k}=P_{2} P_{3} \cdots P_{k}$.

Proof of Claim: Let $S=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ be a clique of size k in $P I S(R)$.
Case I: Suppose that for all I_{i}, there exists a common prime factor, say P_{1}. Then $I_{i}=P_{1} J_{i}$ where $P_{1} \nmid J_{i}, J_{i} \mid P_{2} \cdots P_{k}, J_{i}$ and J_{j} are coprime for all $i, j \in\{1,2, \ldots, k\}$. Since the number of I_{i} 's is k, therefore $J_{i} \in$ $\left\{R, P_{2}, P_{3}, \ldots, P_{k}\right\}$. Thus S is of Type - I.

Case II: Suppose that $k-1$ elements of S has a common prime factor. We assume, without loss of generality, that $P_{1} \mid I_{i}$ for $i \in\{1,2, \ldots, k-1\}$ and $P_{1} \nmid I_{k}$. Then $I_{i}=P_{1} J_{i}$ where $P_{1} \nmid J_{i}$ and $J_{i} \mid P_{2} \cdots P_{k}$, for $i \in\{1,2, \ldots, k-$ $1\}$. Since $P_{1} \nmid I_{k}$ and $I_{i} \sim I_{k}$ for all $i \in\{1,2, \ldots, k-1\}, J_{i} \neq R$. Now, since the number of J_{i} 's is $k-1$, which is equal to the number of prime factors of 0 other than P_{1}, it is clear that $J_{i} \in\left\{P_{2}, P_{3}, \ldots, P_{k}\right\}$. Thus, ignoring the order of the primes, $I_{1}=P_{1} P_{2}, I_{2}=P_{1} P_{3}, \ldots I_{k-1}=P_{1} P_{k}$. Again, as I_{k} is adjacent to all the other I_{i} 's and $P_{1} \nmid I_{k}$, we have $I_{k}=P_{2} P_{3} \cdots P_{k}$. Hence S is of Type - II.

Case III: Suppose that at most $k-2$ elements of S has a common prime factor, say P_{1}. We may assume that P_{1} divides $I_{1}, I_{2}, \ldots, I_{k-2}$ and P_{1} does not divide I_{k-1} and I_{k}. Hence $I_{i}=P_{1} J_{i}$ where $P_{1} \nmid J_{i}, J_{i} \mid P_{2} \cdots P_{k}$ and J_{i} and J_{j} are coprime for $i \in\{1,2, \ldots, k-2\}$. Thus each of $J_{1}, J_{2}, \ldots, J_{k-2}$ has a distinct prime factors from the set $\left\{P_{2}, P_{3}, \ldots P_{k}\right\}$. Without loss of
generality, let $P_{2}\left|J_{1}, P_{3}\right| J_{2}, \ldots, P_{k-1} \mid J_{k-2}$.
Subcase III (a): If they are equal, i.e., $J_{1}=P_{2}, J_{2}=P_{3}, \ldots J_{k-2}=$ P_{k-1}, then since $I_{k-1} \sim I_{i}$ for all $i \in\{1,2, \ldots, k-2\}$ and $P_{1} \nmid I_{k-1}$, we have $I_{k-1}=P_{2} P_{3} \cdots P_{k-1}$. But, by similar arguments, I_{k} is also equal to $P_{2} P_{3} \cdots P_{k-1}$, a contradiction.

Subcase III (b): Without loss of generality, let $J_{1}=P_{2} P_{k}, J_{2}=$ $P_{3}, J_{3}=P_{4}, \ldots J_{k-2}=P_{k-1}$. Then $I_{1}=P_{1} P_{2} P_{k}, I_{2}=P_{1} P_{3}, I_{3}=P_{1} P_{4}, \ldots, I_{k-2}=$ $P_{1} P_{k-1}$. Now, by using similar arguments as in Subcase III (a), we have $I_{k-1}, I_{k} \in\left\{P_{2} P_{3} \cdots P_{k-1}, P_{3} \cdots P_{k-1} P_{k}\right\}$. Without loss of generality, let $I_{k-1}=P_{2} P_{3} \cdots P_{k-1}$ and $I_{k}=P_{3} \cdots P_{k-1} P_{k}$. However, in this case, $I_{k-1} \nsim$ I_{k} as $I_{k-1}+I_{k}$ is not a prime, a contradiction.

Similar arguments hold, if for any $s<k-2$ many I_{i} 's share a common factor and the rest do not. Thus Case III can not occur in a clique and hence any clique of size k is either of Type - I or Type - II, thereby proving the claim.

Now, suppose S is a clique of size t, which is greater than k. Then it has a sub-clique S^{\prime} of size k, and by the above claim, S^{\prime} is one of the above two types. Suppose S^{\prime} is of Type - I, i.e., $S^{\prime}=\left\{I_{1}, I_{2}, I_{3}, \ldots, I_{k}\right\}$ where $I_{1}=P_{1} P_{2}, I_{2}=P_{1} P_{3}, \ldots, I_{k-1}=P_{1} P_{k}$ and $I_{k}=P_{1}$. Since $I_{j} \sim P_{1}$ for all j with $k+1 \leq j \leq t$, we have $P_{1} \mid I_{j}$, i.e, $I_{j}=P_{1} J_{j}$ for all j with $k+1 \leq j \leq t$. However, since $I_{j}=P_{1} J_{j} \sim P_{1} J_{i}$ for all $k+1 \leq j \leq t$ and for all $i=2,3, \ldots, k$. We have $P_{i} \nmid J_{j}$ for all $i \in\{2,3, \ldots, k\}$. Since P_{1}^{2} is not a factor of 0 , we have $P_{1} \nmid J_{j}$. Thus $J_{j}=R$, i.e., $I_{j}=P_{1}$, a contradiction.

Thus S^{\prime} is not of Type - I.
Assume that S^{\prime} is of Type - II, i.e., $S^{\prime}=\left\{I_{1}, I_{2}, I_{3}, \ldots, I_{k}\right\}$ where $I_{1}=$ $P_{1} P_{2}, I_{2}=P_{1} P_{3}, \ldots, I_{k-1}=P_{1} P_{k}$ and $I_{k}=P_{2} P_{3} \cdots P_{k}$. If $P_{1} \mid I_{k+1}$, by similar arguments as above, we get $I_{k+1}=P_{1}$, a contradiction, as $I_{k+1} \sim I_{k}$. Suppose, $P_{i} \mid I_{k+1}$ for some $i \in\{2,3, \ldots, k\}$, say P_{2}. Then $I_{k+1}=P_{2} J_{k+1}$. Since $I_{k+1} \sim I_{k}=P_{2} P_{3} \cdots P_{k}$, we have $P_{3}, P_{4}, \ldots, P_{k} \nmid J_{k+1}$. Since P_{2}^{2} is not a factor of 0 , we have $P_{2} \nmid J_{k+1}$. Also we have shown that $P_{1} \nmid I_{k+1}$. Hence $J_{k+1}=R$ and so $I_{k+1}=P_{2}$. But this implies that $I_{k+1} \nsim I_{2}$, a contradiction. Thus S^{\prime} is not of Type - II.

Thus, there does not exist any clique of size greater than k and hence $\omega(P I S(R))$ is k.

Theorem 4.4.5 Let R be a general ZPI-ring which is not a field. Let $0=$ $P_{1}{ }^{\alpha_{1}} P_{2}{ }^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}$, where $P_{1}, P_{2}, \ldots, P_{k}$ are distinct prime ideals of R and $\alpha_{i} \geq 2$ for at least one $i \in\{1,2, \ldots, k\}$, then $\omega(P I S(R))=k+1$.

Proof : We claim that any clique of size $k+1$ is of the following type where α_{i}^{\prime} denotes a positive integer less than or equal to α_{i} for each $i \in\{1,2, \ldots, k\}$ ignoring the ordering of the primes:

Type - III: $\left\{I_{1}, I_{2}, \ldots, I_{k}, I_{k+1}\right\}$ where $I_{1}=P_{1} P_{2}^{\alpha_{2}^{\prime}}, I_{2}=P_{1} P_{3}^{\alpha_{3}^{\prime}}, \ldots, I_{k-1}=$ $P_{1} P_{k}^{\alpha_{k}^{\prime}}, I_{k}=P_{1}$ and $I_{k+1}=P_{1}^{\alpha_{1}^{\prime}}$ for some $\alpha_{1}^{\prime} \geq 2$.

Proof of Claim: Let $S=\left\{I_{1}, I_{2}, \ldots, I_{k}, I_{k+1}\right\}$ be a clique of size $k+1$ in $P I S(R)$.

Case I: Assume that there is no common prime factor which divides all I_{i} 's. We may assume that P_{1} divides $I_{1}, I_{2}, \ldots, I_{k}$ and P_{1} does not divide
I_{k+1}. Then $I_{i}=P_{1}^{\alpha_{t_{i}} \prime} J_{i}$ where $P_{1} \nmid J_{i}, J_{i} \mid P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}, \alpha_{t_{i}}^{\prime} \leq \alpha_{1}, J_{i}$ and J_{j} are coprime for all $i, j \in\{1, \ldots, k\}$. Hence $J_{i} \in\left\{R, P_{2}{ }^{\alpha_{2}^{\prime}}, \cdots, P_{k} \alpha_{k}^{\prime}\right\}$ where $0<\alpha_{i}^{\prime} \leq \alpha_{i}$ for each i. Observe that if P_{1}^{2} divides both I_{i} and I_{j} for some $i, j \in\{1,2, \ldots, k\}$, we have $I_{i} \nsim I_{j}$, a contradiction. Thus $P_{1}^{2} \mid I_{i}$ holds for at most one $i \in\{1, \ldots, k\}$. Thus, ignoring the order of the primes, we conclude the following subcases:

Subcase I (a): Let $P_{1}^{2} \mid I_{k}$. Then $I_{1}=P_{1} P_{2}^{\alpha_{2}^{\prime}}, I_{2}=P_{1} P_{3}^{\alpha_{3}^{\prime}}, \cdots, I_{k-1}=$ $P_{1} P_{k}{ }^{\alpha_{k} \prime}, I_{k}=P_{1}^{\alpha_{1}^{\prime}}$ for some $\alpha_{1}^{\prime} \geq 2$. Since $I_{k+1} \sim I_{i}=P_{1} P_{i+1}^{\alpha_{i+1}^{\prime}}$ for all $i \in\{1, \ldots, k-1\}$ and $P_{1} \nmid I_{k+1}$, we have $I_{k+1}=P_{2} P_{3} \cdots P_{k}$. On the other hand, since $I_{k}=P_{1}^{\alpha_{1}^{\prime}}$, we have $I_{k} \sim I_{k+1}=P_{2} P_{3} \cdots P_{k}$, a contradiction.

Subcase I (b): Let $P_{1}^{2} \nmid I_{k}$ and $P_{1}^{2} \mid I_{i}$ for some $i \in\{1, \ldots, k-1\}$, say I_{1}. Then $I_{1}=P_{1}^{\alpha_{1}^{\prime}} P_{2}^{\alpha_{2}^{\prime}}, I_{2}=P_{1} P_{3}^{\alpha_{3}^{\prime}}, \cdots, I_{k}=P_{1} P_{k}^{\alpha_{k}^{\prime}}, I_{k}=P_{1}$ for some $\alpha_{1}^{\prime} \geq 2$. Similar to Subcase I (a), we conclude again the same contradiction.

Subcase I (c): Let $P_{1}^{2} \nmid I_{i}$ for all $i \in\{1, \ldots, k+1\}$. Then $I_{1}=$ $P_{1} P_{2}^{\alpha_{2}^{\prime}}, I_{2}=P_{1} P_{3}^{\alpha_{3}^{\prime}}, \cdots, I_{k-1}=P_{1} P_{k}^{\alpha_{k}^{\prime}}, I_{k}=P_{1}$. Similar to Subcase I (a), we conclude again the same contradiction.

Similar arguments hold, if any $s(<k)$ many I_{i} 's share a common prime factor and the rest do not. Thus, we assume that all the elements of S has a common prime factor. In Case II and III, we show that this common prime factor is one of the primes P_{i} of which the power $\alpha_{i} \geq 2$. Since $\alpha_{i} \geq 2$ for at least one $i \in\{1,2, \ldots, k\}$, without loss of generality, we assume that $\alpha_{1} \geq 2$.

Case II: Assume that $\alpha_{i}=1$ and P_{i} is a common prime factor of S,
say P_{2}. Then $I_{i}=P_{2} J_{i}$ where $P_{2} \nmid J_{i}, J_{i} \mid P_{1}{ }^{\alpha_{1}} P_{3}{ }^{\alpha_{3}} \cdots P_{k}{ }^{\alpha_{k}}, J_{i}$ and J_{j} are coprime, for $i, j \in\{1,2, \ldots, k+1\}$. Thus $J_{i} \in\left\{R, P_{1}{ }^{\alpha_{1}^{\prime}}, P_{3}^{\alpha_{3}^{\prime}}, \cdots, P_{k}{ }^{\alpha_{k} \prime}\right\}$ for $i \in\{1,2, \ldots, k\}$; and so, ignoring the order of the primes, $I_{1}=P_{2} P_{1}{ }^{\alpha_{1}^{\prime}}$, $I_{2}=P_{2} P_{3}{ }^{\alpha_{3}^{\prime}}, \ldots, I_{k-1}=P_{2} P_{k}{ }^{\alpha_{k}^{\prime}}, I_{k}=P_{2}$. Since $I_{i} \sim I_{k+1}=P_{2} J_{k+1}$ for all $i \in$ $\{1,2, \ldots, k\}, P_{i} \nmid J_{k+1}$ for all $i \in\{1,3, \ldots, k\}$. Since $J_{k+1} \mid P_{1}{ }^{\alpha_{1}} P_{3}^{\alpha_{3}} \cdots P_{k}{ }^{\alpha_{k}}$, we get $J_{k+1}=R$; and so $I_{k+1}=I_{k}$, a contradiction.

Case III: Suppose that $\alpha_{i} \geq 2$ and P_{i} is a common prime factor, say P_{1}. Then $I_{i}+I_{j}=P_{1}$ for all $i, j \in\{1,2, \ldots, k+1\}$. Hence $I_{i}=P_{1} J_{i}$ where $J_{i} \mid P_{2}{ }^{\alpha_{2}} \ldots P_{k}^{\alpha_{k}}, J_{i}$ and J_{j} coprime for all $i, j \in\{1,2, \ldots, k+1\}$. Since the number of J_{i} 's is $k+1$, therefore, $J_{i} \in\left\{R, P_{1}{ }^{\alpha_{1}^{\prime}}, P_{2}{ }^{\alpha_{2}^{\prime}}, \cdots, P_{k}{ }^{\alpha_{k}^{\prime}}\right\}$ for each $i \in\{1, \ldots, k\}$. Thus, ignoring the order of the primes, $I_{1}=P_{1} P_{2}^{\alpha_{2}^{\prime}}, \ldots$, $I_{k-1}=P_{1} P_{k}{ }^{\alpha_{k}^{\prime}}, I_{k}=P_{1}$ and $I_{k+1}=P_{1}{ }^{\alpha_{1}^{\prime}}$. Thus S is of Type - III.

Hence, the claim is proved, i.e., any clique of size $k+1$ is of Type - III. Now, suppose S is a clique of size t, which is greater than $k+1$. Then it has a sub-clique S^{\prime} of size $k+1$, and by the above claim, S^{\prime} is of Type - III, i.e., $S^{\prime}=\left\{I_{1}, I_{2}, \ldots, I_{k}, I_{k+1}\right\}$ where $I_{1}=P_{1} P_{2}^{\alpha_{2}^{\prime}}, \ldots, I_{k-1}=P_{1} P_{k}{ }^{\alpha_{k}^{\prime}}, I_{k}=P_{1}$ and $I_{k+1}=P_{1} \alpha_{1}^{\prime}$ for some $\alpha_{1}^{\prime} \geq 2$. Since $I_{k+2} \sim I_{k}$ and $I_{k+2} \sim I_{k+1}$, we have $P_{1} \mid I_{k+2}$ but $P_{1}^{2} \nmid I_{k+2}$. Then $I_{k+2}=P_{1} J_{k+2}$ such that J_{k+2} is not divisible by all primes P_{1}, \ldots, P_{k} as $I_{k+2} \sim I_{i}$ for all $i \in\{1,2, \ldots, k-1\}$. Thus, $J_{k+2}=R$ which implies $I_{k+2}=I_{k}$, a contradiction. Consequently, there does not exist any clique of size greater than $k+1$ and hence $\omega(P I S(R))=k+1$.

In a view of Theorems 4.4.4 and 4.4.5, we conclude the following result.

Corollary 4.4.2 Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct
prime integers. Then $\omega\left(\operatorname{PIS}\left(\mathbb{Z}_{n}\right)\right)= \begin{cases}k, & \text { if } n \text { is square-free } \\ k+1, & \text { else }\end{cases}$
Theorem 4.4.6 Let J be a general ZPI-ring which is not a field. Then,
(1) $\omega, \chi \geq|\operatorname{Ass}(R)|$.
(2) $\gamma \leq|\operatorname{Ass}(R)|$.

Proof : Assume that $0=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}$, where $P_{1}, P_{2}, \ldots, P_{k}$ are associated primes.
(1) Consider the set of ideals $A=\left\{P_{1}, P_{1} P_{2}, \ldots, P_{1} P_{k}\right\}$. As $P_{1}+P_{1} P_{i}=$ $P_{1}=P_{1} P_{i}+P_{1} P_{j}$ for $i \neq j, A$ is a clique. Thus, $\omega \geq k$. Now, as $\chi \geq \omega$ we have $\chi \geq k$.
(2) Consider the set of ideals $S=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$. We claim that S is a dominating set. Let I be a non-trivial ideal of R. Then, I has a prime factor, say P_{i}, and hence $I+P_{i}=P_{i}$; i.e. I is adjacent to P_{i}. Thus, S dominates $P I S(R)$.

Corollary 4.4.3 Let n be a positive integer that is not prime. Then, the following statements hold:
(1) $\operatorname{PIS}\left(\mathbb{Z}_{n}\right)$ is a star graph if and only if $n=p^{k}$ with $k \geq 3$.
(2) The diameter of $\operatorname{PIS}\left(\mathbb{Z}_{n}\right)$ is 2 unless $n=p^{2}, p^{3}, p q$. For $n=p^{2}, p^{3}, p q$ the diameter of $\operatorname{PIS}\left(\mathbb{Z}_{n}\right)$ is 0,1 and ∞, respectively.
(3) $\operatorname{girth}\left(\operatorname{PIS}\left(\mathbb{Z}_{n}\right)\right)=3$ unless $n=p^{k}$ or $p q$.
(4) $\operatorname{PIS}\left(\mathbb{Z}_{n}\right)$ bipartite if and only if $n=p^{k}$ or $p q$.
(5) If $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, then $\omega\left(\operatorname{PIS}\left(\mathbb{Z}_{n}\right)\right), \chi\left(\operatorname{PIS}\left(\mathbb{Z}_{n}\right)\right) \geq k$ and $\gamma\left(P I S\left(\mathbb{Z}_{n}\right)\right) \leq k$.

