
Chapter 5

Annihilating-Ideal Graph of Zn

Over the last two decades, various graphs defined on rings have become an

interesting topic of research. Various graphs like [3],[8],[11],[12],[9],[14],[17],[20]

have been constructed to study the interplay between the graph-theoretic

and ring-theoretic properties. Interested readers are referred to the fol-

lowing surveys [7],[31] on graphs defined on rings. One such graph is the

annihilating-ideal graph AG(R) of a commutative ring R, introduced by

Behboodi and Rakeei [14].

5.1 Definitions and Previous Results

Definition 5.1.1 [14] Let R be a commutative ring with unity. The annihilating-

ideal graph of R is defined as the graph AG(R) whose vertex set is the set

of all non-zero ideals with non-zero annihilators and two distinct vertices I

and J are adjacent if and only if IJ = 0.

In [34], the authors proved that AG(Zn) is weakly perfect, i.e., its clique
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number ω is equal to its chromatic number χ.

Perfect graphs play an important role in graph theory, as many hard

graph problems in general like graph coloring, finding maximum clique and

independent set, etc. can be solved in polynomial-time in case of perfect

graphs. Thus characterizing perfect graphs in different families is an im-

portant issue (see [26] and [24]). In this short chapter, we characterize n

for which AG(Zn) is perfect[40]. The following theorem is the main result

of the chapter:

Theorem 5.1.1 AG(Zn) is perfect if and only if n is one of the forms

pα1
1 , pα1

1 pα2
2 , pα1

1 p2p3 or p1p2p3p4, where pi’s are distinct primes and αi ∈ N.

In the next section, we prove Theorem 5.1.1. Before that we state an

observation and an important result which will be crucial in our proof.

Proposition 5.1.1 The vertex set of AG(Zn) is {⟨m⟩ : m | n, 1 < m < n}
and two vertices ⟨m1⟩ and ⟨m2⟩ are adjacent if and only if n | m1m2.

Theorem 5.1.2 (Strong Perfect Graph Theorem) [21] A graph G is perfect

if and only if neither G nor Gc has an induced odd-cycle of length greater

or equal to 5.

5.2 Proof of Theorem 5.1.1

We split the proof of Theorem 5.1.1 into different cases (lemmas) depending

upon the number of distinct prime factors of n.
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First, we deal with the case when n has more than 4 distinct prime

factors and show that in this case AG(Zn) is not perfect.

Lemma 5.2.1 If n = p1
α1p2

α2 · · · pkαk and k ≥ 5, then AG(Zn) is not

perfect.

Proof : Let m = n/(p1
α1p2

α2 · · · p5α5). Then the following five vertices,

taken in order,

⟨p1α1p2
α2p4

α4m⟩, ⟨p3α3p4
α4p5

α5m⟩, ⟨p1α1p2
α2p3

α3m⟩, ⟨p2α2p4
α4p5

α5m⟩, ⟨p1α1p3
α3p5

α5m⟩

form an induced 5-cycle in AG(Zn). The adjacency and non-adjacency

follows from Proposition 5.1.1. Hence, by strong perfect graph theorem,

the lemma follows. □

Next we focus on the case when n has exactly 4 distinct prime factors.

We characterize the condition when AG(Zn) is perfect.

Lemma 5.2.2 If n = p1
α1p2

α2p3
α3p4

α4, then AG(Zn) is perfect if and only

if αi = 1 for all i.

Proof : Let αi > 1 for some i, say α1 > 1. Then the following five vertices,

taken in order,

⟨p1α1p4
α4⟩, ⟨p2α2p3

α3p4
α4⟩, ⟨p1α1p2

α2⟩, ⟨p1p3α3p4
α4⟩, ⟨p1α1−1p2

α2p3
α3⟩

form an induced 5-cycle in AG(Zn). As earlier, the adjacency and non-

adjacency follows from Proposition 5.1.1. Hence, by strong perfect graph

theorem, AG(Zn) is not perfect.

111



Now, we assume that n = p1p2p3p4. Then AG(Zn) has 14 vertices:

1st type: ⟨p1⟩, ⟨p2⟩, ⟨p3⟩, ⟨p4⟩ 4 vertices of degree 1

2nd type: ⟨p1p2⟩, ⟨p2p3⟩, . . . , ⟨p3p4⟩ 6 vertices of degree 3

3rd type: ⟨p1p2p3⟩, ⟨p2p3p4⟩, ⟨p1p3p4⟩, ⟨p1p2p4⟩ 4 vertices of degree 7

If possible, let AG(Zn) have an induced odd cycle C of length t ≥ 5.

Thus C must have a vertex of second type. Without loss of generality,

let ⟨p1p2⟩ be a vertex in C. As ⟨p1p2⟩ is adjacent to three vertices, namely

⟨p3p4⟩, ⟨p1p3p4⟩, ⟨p2p3p4⟩, at least two of them, must lie on C.

Case 1: ⟨p1p3p4⟩ ∼ ⟨p1p2⟩ ∼ ⟨p3p4⟩ be a part of C. Let ⟨x⟩ be the next

vertex on C, i.e., ⟨p1p3p4⟩ ∼ ⟨p1p2⟩ ∼ ⟨p3p4⟩ ∼ ⟨x⟩. Then by the adjacency

condition of the last two vertices, we get p1p2 | x. But this imply that

⟨x⟩ ∼ ⟨p1p3p4⟩, i.e., we get a chord in C, a contradiction.

Case 2: ⟨p2p3p4⟩ ∼ ⟨p1p2⟩ ∼ ⟨p3p4⟩ be a part of C. In this case also,

proceeding similarly, we get a contradiction.

Case 3: ⟨p1p3p4⟩ ∼ ⟨p1p2⟩ ∼ ⟨p2p3p4⟩ be a part of C. However, in this

case, we get a chord of the form ⟨p1p3p4⟩ ∼ ⟨p2p3p4⟩ in C, a contradiction.

Thus AG(Zn) has no induced odd cycle C of length t ≥ 5.

Now, we consider the complement graph of AG(Zn). If possible, let

C ′ : ⟨x1⟩ ∼ ⟨x2⟩ ∼ · · · ∼ ⟨xt⟩ ∼ ⟨x1⟩ be an induced odd cycle C of length

t ≥ 5 in AGc(Zn). As C ′ consists of t ≥ 5 vertices, at least one of the

vertices must be of 1st or 2nd type.

Case 1: ⟨x1⟩ is a vertex of 1st type, i.e., without loss of generality, let
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x1 = p1. Now, as ⟨p1⟩ is a pendant vertex in AG(Zn), ⟨p1⟩ is not adjacent to
exactly one vertex in AGc(Zn). Thus C

′ contains a chord, a contradiction.

Case 2: ⟨x1⟩ is a vertex of 2nd type, i.e., without loss of generality, let

x1 = p1p2. As degree of ⟨p1p2⟩ in AG(Zn) is 3, the number of vertices which

are not adjacent to ⟨p1p2⟩ in AGc(Zn) is 3. Thus, as C
′ is chordless cycle of

length t, x1 is not adjacent to (t− 2) vertices in C ′, i.e., (t− 2) ≤ 3. Thus

C ′ must be an induced 5-cycle, i.e.,

C ′ : ⟨p1p2⟩ ∼ ⟨x2⟩ ∼ ⟨x3⟩ ∼ ⟨x4⟩ ∼ ⟨x5⟩ ∼ ⟨p1p2⟩

As ⟨x3⟩, ⟨x4⟩ are adjacent to ⟨p1p2⟩ in AG(Zn), we must have x3, x4 ∈
{p3p4, p1p3p4, p2p3p4}. If {x3, x4} = {p1p3p4, p2p3p4}, then ⟨x3⟩ ∼ ⟨x4⟩ in

AG(Zn). Thus, without loss of generality, we can assume x3 = p3p4 and

x4 = p1p3p4, i.e.,

C ′ : ⟨p1p2⟩ ∼ ⟨x2⟩ ∼ ⟨p3p4⟩ ∼ ⟨p1p3p4⟩ ∼ ⟨x5⟩ ∼ ⟨p1p2⟩

As ⟨x5⟩ ̸∼ ⟨p3p4⟩ in AGc(Zn), we have p1p2 | x5. Thus x5 = p1p2p3 or p1p2p4.

However, in any case, ⟨x5⟩ ∼ ⟨p1p3p4⟩ in AG(Zn), a contradiction.

Thus AGc(Zn) has no induced odd cycle C of length t ≥ 5. Hence, by

strong perfect graph theorem, the lemma follows. □

Now, we turn towards the case when n has exactly three distinct prime

factors and characterize the perfect graphs among this subfamily.

Lemma 5.2.3 If n = p1
α1p2

α2p3
α3 and αi > 1 for at least two i’s, then
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AG(Zn) is not perfect.

Proof : Let αi ≥ 2 for at least two i’s, say α1,α2 ≥ 2. Then the following

five vertices, taken in order,

⟨p2α2p3
α3⟩, ⟨p1α1p2⟩, ⟨p1p2α2−1p3

α3⟩, ⟨p1α1−1p2
α2⟩, ⟨p1α1p3

α3⟩

form an induced 5-cycle in AG(Zn). As earlier, the adjacency and non-

adjacency follows from Proposition 5.1.1. Hence, by strong perfect graph

theorem, AG(Zn) is not perfect. □So, now we assume that n = p1
α1p2p3.

Lemma 5.2.4 If n = pαqr, then AG(Zn) has no induced odd cycle of length

greater than 3.

Proof : If possible, let AG(Zn) has an induced odd cycle C : ⟨x1⟩ ∼ ⟨x2⟩ ∼
· · · ∼ ⟨xt⟩ ∼ ⟨x1⟩, where xi = pαiqβirγi for i = 1, 2, . . . , t.

In the next two Claims, we prove that both βi and γi can not be simul-

taneously 1.

Claim 1: For all i ∈ {1, 2, . . . , t}, either αi < α/2 or one of βi, γi ̸= 1.

Proof of Claim 1: If possible let αi ≥ α/2 and βi = γi = 1. Now ⟨xi⟩ ≁
⟨xi+2⟩ and ⟨xi⟩ ≁ ⟨xi+3⟩ imply αi+2,αi+3 < α/2, hence αi+2 + αi+3 < α,

which is a contradiction as ⟨xi+2⟩ ∼ ⟨xi+3⟩.
Claim 2: For all i ∈ {1, 2, . . . , t}, either αi > α/2 or one of βi, γi ̸= 1.

Proof of Claim 2: Without loss of generality let α1 ≤ α/2 and β1 = γ1 =

1. Now ⟨x1⟩ ∼ ⟨x2⟩ and ⟨x1⟩ ∼ ⟨xt⟩ imply α2,αt ≥ α/2. As ⟨x2⟩ ≁ ⟨xt⟩ then
either β2 + βt = 0 or γ2 + γt = 0 or both. Again without loss of generality
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we can take β2 + βt = 0, i.e., β2 = βt = 0 and hence ⟨x2⟩ ∼ ⟨x3⟩ and

⟨xt⟩ ∼ ⟨xt−1⟩ imply β3 = 1 = βt−1. Now ⟨x1⟩ ∼ ⟨xt⟩ and ⟨x1⟩ ≁ ⟨x4⟩ imply

α1 + αt ≥ α and α1 + α4 < α. From these two equations we have αt > α4.

Therefore α3 + α4 ≥ α imply α3 + αt > α. So ⟨xt⟩ ≁ ⟨x3⟩ and β3 = 1 imply

γt + γ3 = 0, i.e., γ3 = γt = 0. Therefore γt−1 = 1. As ⟨x2⟩ ≁ ⟨xt−1⟩ and

βt−1 = γt−1 = 1 hence α2+αt−1 < α and we know α1+α2 ≥ α. From these

two equations we have α1 > αt−1. So αt−1 + αt−2 ≥ α imply α1 + αt−2 > α

and β1 = γ1 = 1, so we have ⟨x1⟩ ∼ ⟨xt−2⟩, which is a contradiction.

From Claim 1 and Claim 2 we see that for any i, both βi and γi can not

be 1. Similarly, it can be shown that both βi and γi can not be 0, because

in that case, we must have βi+1 = γi+1 = 1, a contradiction.

Claim 3: For all i ∈ {1, 2, . . . , t}, αi > α/2 .

Proof of Claim 3: Without loss of generality let α1 ≤ α/2 and β1 =

1, γ1 = 0. Now ⟨x1⟩ ∼ ⟨x2⟩ and ⟨x1⟩ ∼ ⟨xt⟩ imply α2,αt ≥ α/2 and

γ2 = γt = 1. As ⟨x2⟩ ≁ ⟨xt⟩, α2 + αt ≥ α and γ2 + γt = 2, we have

β2 + βt = 0, i.e., β2 = βt = 0. Hence β3 = βt−1 = 1. Now ⟨x3⟩ ≁ ⟨xt⟩ and
β3 = 1 = γt imply α3 + αt < α and α2 + α3 ≥ α, hence α2 > αt. Therefore

αt + αt−1 ≥ α implies α2 + αt−1 > α. So βt−1 = γ2 = 1 imply ⟨x2⟩ ∼ ⟨xt−1⟩,
which is impossible and hence the Claim holds.

So from the Claim 1, 2 and 3, we can consider α1 > α/2, β1 = 1 and

γ1 = 0. Again, from Claim 3 we have α3,α4 > α/2. So ⟨x1⟩ ≁ ⟨x3⟩,
α1 + α3 > α and β1 = 1 imply γ1 + γ3 = 0, i.e., γ3 = 0, i.e., γ4 = 1.

Therefore α1 + α4 > α and β1 = γ4 = 1 imply ⟨x1⟩ ∼ ⟨x4⟩, which is a
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contradiction. This completes the proof. □

Lemma 5.2.5 If n = pαqr, then AGc(Zn) has no induced odd cycle of

length greater than 3.

Proof : We start by noting that ⟨a⟩ ∼ ⟨b⟩ in AGc(Zn) if and only if n ∤ ab.

If possible, let AGc(Zn) has an induced odd cycle C : ⟨x1⟩ ∼ ⟨x2⟩ ∼ · · · ∼
⟨xt⟩ ∼ ⟨x1⟩, where xi = pαiqβirγi for i = 1, 2, . . . , t.

In the next two Claims, we prove that both βi and γi can not be simul-

taneously 1.

Claim 1: For all i ∈ {1, 2, . . . , t}, either αi < α/2 or one of βi, γi ̸= 1.

Proof of Claim 1: If possible let αi ≥ α/2 and βi = γi = 1. As ⟨xi−1⟩
and ⟨xi+1⟩ ∼ ⟨xi⟩, hence αi−1,αi+1 < α/2, i.e., αi−1 + αi+1 < α and hence

⟨xi−1⟩ ∼ ⟨xi+1⟩, which is a contradiction.

Claim 2: For all i ∈ {1, 2, . . . , t}, either αi > α/2 or one of βi, γi ̸= 1.

Proof of Claim 2: Without loss of generality let α1 ≤ α/2 and β1 =

γ1 = 1. As ⟨x3⟩, ⟨x4⟩ ≁ ⟨x1⟩ hence α3,α4 ≥ α/2, i.e., α3 + α4 ≥ α. Now

⟨x3⟩ ∼ ⟨x4⟩ implies either β3 + β4 = 0 or γ3 + γ4 = 0 or both. Without loss

of generality we can assume β3+β4 = 0, i.e., β3 = 0 = β4. Now ⟨x2⟩ ≁ ⟨x4⟩,
β4 = 0 imply β2 = 1 and ⟨x3⟩ ≁ ⟨xt⟩, β3 = 0 imply βt = 1. Again ⟨x1⟩ ∼ ⟨x2⟩
and β1 = 1 = γ1 imply α1+α2 < α. Therefore α2+αt ≥ α implies αt > α1.

So α1 + αt−1 ≥ α imply αt + αt−1 > α. Now ⟨xt⟩ ∼ ⟨xt−1⟩ and βt = 1

imply γt + γt−1 = 0, i.e., γt = 0. Again ⟨x1⟩ ∼ ⟨xt⟩ and β1 = 1 = γ1 imply

α1 + αt < α. So α2 + αt ≥ α imply α2 > α1. So α1 + α3 ≥ α imply
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α2 + α3 > α. Now ⟨x2⟩ ∼ ⟨x3⟩ and β2 = 1 imply γ2 + γ3 = 0, i.e., γ2 = 0.

Therefore γ2 = 0 = γt implies ⟨x2⟩ ∼ ⟨xt⟩, which is impossible.

From Claim 1 and Claim 2 we see that for any i, both βi and γi can not

be 1. Similarly, it can be shown that both βi and γi can not be 0, because

in that case, we must have βi+2 = γi+2 = 1, a contradiction.

Claim 3: For all i ∈ {1, 2, . . . , t}, αi > α/2.

Proof of Claim 3: Without loss of generality let α1 ≤ α/2 and β1 =

1, γ1 = 0. Therefore ⟨x3⟩, ⟨x4⟩ ≁ ⟨x1⟩ imply α3,α4 ≥ α/2 and γ3 = 1 = γ4.

So ⟨x3⟩ ∼ ⟨x4⟩ imply β3 + β4 = 0, i.e., β3 = 0 = β4. Now β4 = 0 and

⟨x4⟩ ≁ ⟨x2⟩ imply β2 = 1. Now ⟨x2⟩ ∼ ⟨x3⟩ and β2 = 1 = γ3 imply

α2 + α3 < α. So α1 + α3 ≥ α imply α1 > α2. Also α2 + αt ≥ α imply

α1 + αt > α. So ⟨x1⟩ ≁ ⟨xt⟩ and β1 = 1 imply γ1 + γt = 0, i.e., γt = 0, i.e.,

γ2 = 1.Hence we have β2 = 1 = γ2, which is not possible by Claim 2 and

Claim 3.

So from the Claim 1, 2 and 3, we can consider α1 > α/2, β1 = 1 and

γ1 = 0. So ⟨x3⟩, ⟨x4⟩ ≁ ⟨x1⟩ imply γ3 = 1 = γ4. Again from Claim 3 we

have α3,α4 > α/2. So ⟨x3⟩ ∼ ⟨x4⟩ implies β3 + β4 = 0, i.e., β3 = 0 = β4.

Now ⟨x2⟩ ∼ ⟨x3⟩, γ3 = 1 and α2,α3 > α/2 imply β2 + β3 = 0, i.e., β2 = 0.

Therefore β2 = 0 = β4 imply ⟨x2⟩ ∼ ⟨x4⟩, which is a contradiction and this

completes the proof. □

Thus, it follows from strong perfect graph theorem and Lemma 5.2.4 and

Lemma 5.2.5, that if n = pαqr, then AG(Zn) is perfect.

Thus, the case when n has three distinct prime factors is complete. Now,
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we focus on the case, when n has two distinct prime factors.

Lemma 5.2.6 If n = pαqβ, then AG(Zn) has no induced odd cycle of length

greater than 3.

Proof : If possible, let AG(Zn) have an induced odd cycle C : ⟨x1⟩ ∼
⟨x2⟩ ∼ · · · ∼ ⟨xt⟩ ∼ ⟨x1⟩, where xi = pαiqβi for i = 1, 2, . . . , t.

Claim 1: For all i ∈ {1, 2, . . . , t}, either αi > α/2 or βi > β/2.

Proof of Claim 1: If αi ≤ α/2 and βi ≤ β/2 for some i, then as ⟨xi⟩ ∼
⟨xi+1⟩, we have αi+1 ≥ α/2 and βi+1 ≥ β/2. Similarly, as ⟨xi⟩ ∼ ⟨xi−1⟩, we
have αi−1 ≥ α/2 and βi−1 ≥ β/2. But this implies αi+1 + αi−1 ≥ α and

βi+1+βi−1 ≥ β, i.e., ⟨xi−1⟩ ∼ ⟨xi+1⟩, a contradiction. Thus the claim holds.

In Claim 1, we show that for any i, either αi or βi is greater than α/2 or

β/2 respectively. In the next claim, we show that both of them can not be

greater or equal to α/2 and β/2 simultaneously.

Claim 2: For any i ∈ {1, . . . , t}, both αi ≥ α/2 and βi ≥ β/2 can not

hold.

Proof of Claim 2: Without loss of generality, suppose α1 ≥ α/2 and

β1 ≥ β/2. As ⟨x1⟩ ̸∼ ⟨x3⟩, we have either α1 + α3 < α or β1 + β3 < β, i.e.,

α3 < α/2 or β3 < β/2. Again, without loss of generality, we assume that

α3 < α/2. So, by Claim 1, we get β3 > β/2. As ⟨x3⟩ is adjacent to both

⟨x2⟩ and ⟨x4⟩, we have α2,α4 > α/2. As ⟨x1⟩ ̸∼ ⟨x4⟩ and α1,α4 ≥ α/2 and

β1 ≥ β/2, we have β4 < β/2. Again as ⟨x4⟩ ∼ ⟨x5⟩, we have β5 > β/2.

Here C is a t-cycle with t odd and t ≥ 5. We show, by strong induction,

that for any odd value of t ≥ 5, we get a contradiction.
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We start with t = 5, i.e., ⟨x1⟩ ∼ ⟨x5⟩. As ⟨x1⟩ ̸∼ ⟨x4⟩ and α1,α4 ≥ α/2,

we have β1 + β4 < β. Again as ⟨x4⟩ ∼ ⟨x5⟩, we have β4 + β5 ≥ β. Thus, we

get β5 > β1. As ⟨x1⟩ ∼ ⟨x2⟩, we have β1 + β2 ≥ β, i.e., β2 + β5 > β. Thus

as ⟨x2⟩ ̸∼ ⟨x5⟩, we must have α2 + α5 < α. Also, as ⟨x1⟩ ∼ ⟨x5⟩, we have

α1 + α5 ≥ α. Thus we must have α1 > α2. Similarly, ⟨x2⟩ ∼ ⟨x3⟩ implies

α2+α3 ≥ α, i.e., α1+α3 > α. On the other hand, as β1, β3 ≥ β/2, we have

β1 + β3 ≥ β. Thus we have ⟨x1⟩ ∼ ⟨x3⟩. Hence we get a contradiction for

t = 5.

For t > 5, as ⟨x1⟩ ̸∼ ⟨x5⟩ and β1, β5 ≥ β/2 and α1 ≥ α/2, we have

α5 < α/2. Thus the induction hypothesis is: For all odd k satisfying 1 <

k < t− 2,

αi < α/2, 1 < i ≤ k, i is odd and βi ≥ β/2, 1 ≤ i ≤ k, i is odd

αj ≥ α/2, 2 < j ≤ k − 1, j is even and βj < β/2, 2 < j ≤ k − 1, j is even

Now ⟨xk+1⟩ ∼ ⟨xk⟩ and αk < α/2 imply αk+1 > α/2. Similarly, ⟨x1⟩ ̸∼
⟨xk+1⟩ and β1 ≥ β/2 implies βk+1 < β/2 and ⟨xk+1⟩ ∼ ⟨xk+2⟩ implies

βk+2 > β/2. As k + 2 ≤ t − 2, we have ⟨x1⟩ ̸∼ ⟨xk+2⟩ and β1, βk+2 > β/2,

which implies αk+2 < α/2. Thus, by induction, we have

For odd i with 1 < i < t,αi < α/2 and, for odd i with 1 ≤ i ≤ t, βi ≥ β/2

For even j with j > 2,αj ≥ α/2 and βj < β/2.

Now, ⟨x2⟩ ̸∼ ⟨xt⟩ implies either β2 + βt < β or α2 + αt < α or both. As

t is odd, t − 1 is even and hence α1,αt−1 ≥ α/2 and β1 > β/2. Thus
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⟨x1⟩ ̸∼ ⟨xt−1⟩ implies β1+ βt−1 < β and ⟨xt⟩ ∼ ⟨xt−1⟩ implies βt+ βt−1 ≥ β.

Therefore βt > β1.

Again ⟨x1⟩ ∼ ⟨x2⟩ implies β1 + β2 ≥ β, i.e., βt + β2 > β. Now, as

⟨x2⟩ ̸∼ ⟨xt⟩, we must have α2 + αt < α.

Also ⟨x1⟩ ∼ ⟨xt⟩ implies α1 + αt ≥ α. Therefore α1 > α2. Similarly

⟨x2⟩ ∼ ⟨x3⟩ implies α2+α3 ≥ α. Thus α1+α3 > α. Again, as β1, β3 > β/2,

we have ⟨x1⟩ ∼ ⟨x3⟩, a contradiction. Hence Claim 2 holds.

From Claim 1 and 2, we see that for any i, both αi, βi can not be simulta-

neously ‘greater or equal’ or ‘lesser or equal’ to α/2 and β/2 respectively. So

for any i, either αi < α/2, βi > β/2 or αi > α/2, βi < β/2 holds. Without

loss of generality, let α1 < α/2 and β1 > β/2.

Now, as ⟨x1⟩ ∼ ⟨x2⟩, we have α1 + α2 ≥ α, which implies α2 > α/2,

i.e., β2 < β/2 (by Claim 2). Similarly ⟨x2⟩ ∼ ⟨x3⟩ implies β3 > β/2, i.e.,

α3 < α/2 (by Claim 2). Proceeding this way, we get

If i is odd, αi < α/2 and βi > β/2

If i is even, αi > α/2 and βi < β/2

As t is odd, we have αt < α/2. Also, as ⟨x1⟩ ∼ ⟨xt⟩, we have α1 + αt ≥ α.

However as α1,αt < α/2, we get a contradiction. Thus AG(Zn) has no

induced odd cycle of length greater than 3. □

Lemma 5.2.7 If n = pαqβ, then AGc(Zn) has no induced odd cycle of

length greater than 3.

Proof : We start by noting that ⟨a⟩ ∼ ⟨b⟩ in AGc(Zn) if and only if n ∤ ab.
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If possible, let AGc(Zn) has an induced odd cycle C : ⟨x1⟩ ∼ ⟨x2⟩ ∼ · · · ∼
⟨xt⟩ ∼ ⟨x1⟩, where xi = pαiqβi for i = 1, 2, . . . , t.

Claim 1: For all i ∈ {1, 2, . . . , t}, either αi > α/2 or βi > β/2.

Proof of Claim 1: If αi ≤ α/2 and βi ≤ β/2 for some i, then as ⟨xi⟩ ̸∼
⟨xi+2⟩ and ⟨xi⟩ ̸∼ ⟨xi+3⟩, we have αi+2,αi+3 ≥ α/2 and βi+2, βi+3 ≥ β/2.

But this imply that ⟨xi+2⟩ ̸∼ ⟨xi+3⟩ in AGc(Zn), a contradiction. Hence

Claim 1 holds. In Claim 1, we show that for any i, either αi or βi is greater

than α/2 or β/2 respectively. In the next claim, we show that both of them

can not be greater or equal to α/2 and β/2 simulatneously.

Claim 2: For any i, both αi ≥ α/2 and βi ≥ β/2 can not hold.

Proof of Claim 2: Without loss of generality, suppose α1 ≥ α/2 and

β1 ≥ β/2. ⟨x1⟩ ∼ ⟨x2⟩ implies either α1 + α2 < α or β1 + β2 < β or

both. Again, without loss of generality, we assume that α1 + α2 < α, i.e.,

α2 < α/2. Now ⟨x2⟩ ≁ ⟨xt⟩ implies α2 + αt ≥ α, i.e., αt > α/2.

At first we assume that t = 5. Therefore ⟨x1⟩ ∼ ⟨x5⟩ and α1,α5 ≥ α/2

imply β1 + β5 < β. Now ⟨x1⟩ ≁ ⟨x3⟩ imply α1 + α3 ≥ α, so α1 + α2 < α

implies α3 > α2. Again ⟨x3⟩ ∼ ⟨x4⟩ imply either α3+α4 < α or β3+β4 < β

or both. Now ⟨x2⟩ ≁ ⟨x4⟩ imply α2 + α4 ≥ α. If α3 + α4 < α, then we

have α2 > α3, which is a contradiction as we already have α3 > α2. Now

⟨x1⟩ ≁ ⟨x4⟩ implies β1+β4 ≥ β. If β3+β4 < β, then we have β1 > β3. Now

⟨x3⟩ ≁ ⟨x5⟩ implies β3 + β5 ≥ β, therefore β1 + β5 > β, which contradicts

the condition β1 + β5 < β. So for t = 5 the Claim 2 is true.

Now assume that t > 5. As α1,αt ≥ α/2 and ⟨x1⟩ ∼ ⟨xt⟩, we have
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β1+βt < β, i.e., βt < β/2 as β1 ≥ β/2. Now α2 < α/2 and ⟨x4⟩, ⟨x5⟩ ≁ ⟨x2⟩
imply α4,α5 > α/2, hence α4 + α5 > α. Again βt < β/2 and ⟨x4⟩, ⟨x5⟩ ≁
⟨xt⟩ imply β4, β5 > β/2, hence β4 + β5 > β, which is a contradiction as

⟨x4⟩ ∼ ⟨x5⟩. Hence Claim 2 holds for all odd t ≥ 5.

From Claim 1 and 2, we see that for any i, both αi, βi can not be simulta-

neously ‘greater or equal’ or ‘lesser or equal’ to α/2 and β/2 respectively. So

for any i, either αi < α/2, βi > β/2 or αi > α/2, βi < β/2 holds. Without

loss of generality, let α1 < α/2 and β1 > β/2.

Now ⟨x3⟩, ⟨x4⟩ ≁ ⟨x1⟩ imply α3,α4 > α/2 and hence by Claim 2 we

have β3, β4 < β/2. As ⟨x2⟩ ≁ ⟨x4⟩, so β2 > β/2 and by Claim 2 we have

α2 < α/2. Now ⟨x2⟩ ≁ ⟨x5⟩ implies α5 > α/2. Then by Claim 2 we have

β5 < β/2, but β3 < β/2 imply β3 + β5 < β, which is a contradiction as

⟨x3⟩ ≁ ⟨x5⟩. Thus AGc(Zn) has no induced odd cycle of length greater than

3. □

Thus from Lemma 5.2.6 and Lemma 5.2.7, we have if n = pαqβ, then

AG(Zn) is perfect.

Now, we deal with the last case when n is a prime power.

Lemma 5.2.8 If n = pα, then AG(Zn) is perfect.

Proof : In this case, the vertices are ⟨p⟩, ⟨p2⟩, . . . , ⟨pα−1⟩ and two vertices

⟨pk⟩ and ⟨pl⟩ are adjacent in AG(Zn) if and only if k + l ≥ α.

If possible, let C : ⟨pk1⟩ ∼ ⟨pk2⟩ ∼ · · · ∼ ⟨pkt⟩ ∼ ⟨pk1⟩ be an induced

odd cycle of length t ≥ 5. Then from adjacency and non-adjacency condi-

tions, we have the following two sets of relations. Adding them, we get a
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contradiction:

k1 + k2 ≥ α k1 + k3 < α

k2 + k3 ≥ α k2 + k4 < α

...
...

kt−1 + kt ≥ α kt−1 + k1 < α

kt + k1 ≥ α kt + k2 < α

2(k1 + k2 + · · ·+ kt) ≥ tα 2(k1 + k2 + · · ·+ kt) < tα

Thus AG(Zn) has no induced odd cycle C of length t ≥ 5. Proceeding

similarly, it can be shown that AGc(Zn) also has no induced odd cycle of

length t ≥ 5. Hence AG(Zn) is perfect. □

Combining all the results in this section, we get the proof of Theorem

5.1.1.
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