Chapter 5

Annihilating-Ideal Graph of \mathbb{Z}_{n}

Over the last two decades, various graphs defined on rings have become an interesting topic of research. Various graphs like [3],[8],[11],[12], [9],[14], [17],[20] have been constructed to study the interplay between the graph-theoretic and ring-theoretic properties. Interested readers are referred to the following surveys [7],[31] on graphs defined on rings. One such graph is the annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ of a commutative ring R, introduced by Behboodi and Rakeei [14].

5.1 Definitions and Previous Results

Definition 5.1.1 [14] Let R be a commutative ring with unity. The annihilatingideal graph of R is defined as the graph $\mathbb{A} \mathbb{G}(R)$ whose vertex set is the set of all non-zero ideals with non-zero annihilators and two distinct vertices I and J are adjacent if and only if $I J=0$.

In [34], the authors proved that $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is weakly perfect, i.e., its clique
number ω is equal to its chromatic number χ.
Perfect graphs play an important role in graph theory, as many hard graph problems in general like graph coloring, finding maximum clique and independent set, etc. can be solved in polynomial-time in case of perfect graphs. Thus characterizing perfect graphs in different families is an important issue (see [26] and [24]). In this short chapter, we characterize n for which $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect[40]. The following theorem is the main result of the chapter:

Theorem 5.1.1 $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect if and only if n is one of the forms $p_{1}^{\alpha_{1}}, p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}, p_{1}^{\alpha_{1}} p_{2} p_{3}$ or $p_{1} p_{2} p_{3} p_{4}$, where p_{i} 's are distinct primes and $\alpha_{i} \in \mathbb{N}$.

In the next section, we prove Theorem 5.1.1. Before that we state an observation and an important result which will be crucial in our proof.

Proposition 5.1.1 The vertex set of $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is $\{\langle m\rangle: m \mid n, 1<m<n\}$ and two vertices $\left\langle m_{1}\right\rangle$ and $\left\langle m_{2}\right\rangle$ are adjacent if and only if $n \mid m_{1} m_{2}$.

Theorem 5.1.2 (Strong Perfect Graph Theorem) [21] A graph G is perfect if and only if neither G nor G^{c} has an induced odd-cycle of length greater or equal to 5 .

5.2 Proof of Theorem 5.1.1

We split the proof of Theorem 5.1.1 into different cases (lemmas) depending upon the number of distinct prime factors of n.

First, we deal with the case when n has more than 4 distinct prime factors and show that in this case $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is not perfect.

Lemma 5.2.1 If $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ and $k \geq 5$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is not perfect.

Proof : Let $m=n /\left(p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{5}{ }^{\alpha_{5}}\right)$. Then the following five vertices, taken in order,
$\left\langle p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{4}{ }^{\alpha_{4}} m\right\rangle,\left\langle p_{3}{ }^{\alpha_{3}} p_{4}{ }^{\alpha_{4}} p_{5}{ }^{\alpha_{5}} m\right\rangle,\left\langle p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} m\right\rangle,\left\langle p_{2}{ }^{\alpha_{2}} p_{4}{ }^{\alpha_{4}} p_{5}{ }^{\alpha_{5}} m\right\rangle,\left\langle p_{1}{ }^{\alpha_{1}} p_{3}{ }^{\alpha_{3}} p_{5}^{\alpha_{5}} m\right\rangle$
form an induced 5-cycle in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$. The adjacency and non-adjacency follows from Proposition 5.1.1. Hence, by strong perfect graph theorem, the lemma follows.

Next we focus on the case when n has exactly 4 distinct prime factors. We characterize the condition when $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect.

Lemma 5.2.2 If $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} p_{4}{ }^{\alpha_{4}}$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect if and only if $\alpha_{i}=1$ for all i.

Proof: Let $\alpha_{i}>1$ for some i, say $\alpha_{1}>1$. Then the following five vertices, taken in order,

$$
\left\langle p_{1}{ }^{\alpha_{1}} p_{4}{ }^{\alpha_{4}}\right\rangle,\left\langle p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} p_{4}^{\alpha_{4}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1} p_{3}{ }^{\alpha_{3}} p_{4}{ }^{\alpha_{4}}\right\rangle,\left\langle p_{1}{ }^{\alpha_{1}-1} p_{2}{ }_{2}^{\alpha_{2}} p_{3}{ }^{\alpha_{3}}\right\rangle
$$

form an induced 5-cycle in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$. As earlier, the adjacency and nonadjacency follows from Proposition 5.1.1. Hence, by strong perfect graph theorem, $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is not perfect.

Now, we assume that $n=p_{1} p_{2} p_{3} p_{4}$. Then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ has 14 vertices:

1st type: $\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{4}\right\rangle \quad 4$ vertices of degree 1
2nd type: $\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{2} p_{3}\right\rangle, \ldots,\left\langle p_{3} p_{4}\right\rangle \quad 6$ vertices of degree 3
3rd type: $\left\langle p_{1} p_{2} p_{3}\right\rangle,\left\langle p_{2} p_{3} p_{4}\right\rangle,\left\langle p_{1} p_{3} p_{4}\right\rangle,\left\langle p_{1} p_{2} p_{4}\right\rangle \quad 4$ vertices of degree 7
If possible, let $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ have an induced odd cycle C of length $t \geq 5$. Thus C must have a vertex of second type. Without loss of generality, let $\left\langle p_{1} p_{2}\right\rangle$ be a vertex in C. As $\left\langle p_{1} p_{2}\right\rangle$ is adjacent to three vertices, namely $\left\langle p_{3} p_{4}\right\rangle,\left\langle p_{1} p_{3} p_{4}\right\rangle,\left\langle p_{2} p_{3} p_{4}\right\rangle$, at least two of them, must lie on C.

Case 1: $\left\langle p_{1} p_{3} p_{4}\right\rangle \sim\left\langle p_{1} p_{2}\right\rangle \sim\left\langle p_{3} p_{4}\right\rangle$ be a part of C. Let $\langle x\rangle$ be the next vertex on C, i.e., $\left\langle p_{1} p_{3} p_{4}\right\rangle \sim\left\langle p_{1} p_{2}\right\rangle \sim\left\langle p_{3} p_{4}\right\rangle \sim\langle x\rangle$. Then by the adjacency condition of the last two vertices, we get $p_{1} p_{2} \mid x$. But this imply that $\langle x\rangle \sim\left\langle p_{1} p_{3} p_{4}\right\rangle$, i.e., we get a chord in C, a contradiction.

Case 2: $\left\langle p_{2} p_{3} p_{4}\right\rangle \sim\left\langle p_{1} p_{2}\right\rangle \sim\left\langle p_{3} p_{4}\right\rangle$ be a part of C. In this case also, proceeding similarly, we get a contradiction.

Case 3: $\left\langle p_{1} p_{3} p_{4}\right\rangle \sim\left\langle p_{1} p_{2}\right\rangle \sim\left\langle p_{2} p_{3} p_{4}\right\rangle$ be a part of C. However, in this case, we get a chord of the form $\left\langle p_{1} p_{3} p_{4}\right\rangle \sim\left\langle p_{2} p_{3} p_{4}\right\rangle$ in C, a contradiction.

Thus $\mathbb{A G}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle C of length $t \geq 5$.
Now, we consider the complement graph of $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$. If possible, let $C^{\prime}:\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle \sim \cdots \sim\left\langle x_{t}\right\rangle \sim\left\langle x_{1}\right\rangle$ be an induced odd cycle C of length $t \geq 5$ in $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$. As C^{\prime} consists of $t \geq 5$ vertices, at least one of the vertices must be of 1st or 2nd type.

Case 1: $\left\langle x_{1}\right\rangle$ is a vertex of 1st type, i.e., without loss of generality, let
$x_{1}=p_{1}$. Now, as $\left\langle p_{1}\right\rangle$ is a pendant vertex in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right),\left\langle p_{1}\right\rangle$ is not adjacent to exactly one vertex in $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$. Thus C^{\prime} contains a chord, a contradiction.

Case 2: $\left\langle x_{1}\right\rangle$ is a vertex of 2nd type, i.e., without loss of generality, let $x_{1}=p_{1} p_{2}$. As degree of $\left\langle p_{1} p_{2}\right\rangle$ in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is 3 , the number of vertices which are not adjacent to $\left\langle p_{1} p_{2}\right\rangle$ in $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$ is 3 . Thus, as C^{\prime} is chordless cycle of length t, x_{1} is not adjacent to $(t-2)$ vertices in C^{\prime}, i.e., $(t-2) \leq 3$. Thus C^{\prime} must be an induced 5 -cycle, i.e.,

$$
C^{\prime}:\left\langle p_{1} p_{2}\right\rangle \sim\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle \sim\left\langle x_{5}\right\rangle \sim\left\langle p_{1} p_{2}\right\rangle
$$

As $\left\langle x_{3}\right\rangle,\left\langle x_{4}\right\rangle$ are adjacent to $\left\langle p_{1} p_{2}\right\rangle$ in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$, we must have $x_{3}, x_{4} \in$ $\left\{p_{3} p_{4}, p_{1} p_{3} p_{4}, p_{2} p_{3} p_{4}\right\}$. If $\left\{x_{3}, x_{4}\right\}=\left\{p_{1} p_{3} p_{4}, p_{2} p_{3} p_{4}\right\}$, then $\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle$ in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$. Thus, without loss of generality, we can assume $x_{3}=p_{3} p_{4}$ and $x_{4}=p_{1} p_{3} p_{4}$, i.e.,

$$
C^{\prime}:\left\langle p_{1} p_{2}\right\rangle \sim\left\langle x_{2}\right\rangle \sim\left\langle p_{3} p_{4}\right\rangle \sim\left\langle p_{1} p_{3} p_{4}\right\rangle \sim\left\langle x_{5}\right\rangle \sim\left\langle p_{1} p_{2}\right\rangle
$$

As $\left\langle x_{5}\right\rangle \nsim\left\langle p_{3} p_{4}\right\rangle$ in $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$, we have $p_{1} p_{2} \mid x_{5}$. Thus $x_{5}=p_{1} p_{2} p_{3}$ or $p_{1} p_{2} p_{4}$. However, in any case, $\left\langle x_{5}\right\rangle \sim\left\langle p_{1} p_{3} p_{4}\right\rangle$ in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$, a contradiction.

Thus $\mathbb{A G}^{c}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle C of length $t \geq 5$. Hence, by strong perfect graph theorem, the lemma follows.

Now, we turn towards the case when n has exactly three distinct prime factors and characterize the perfect graphs among this subfamily.

Lemma 5.2.3 If $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}}$ and $\alpha_{i}>1$ for at least two i 's, then
$\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is not perfect.

Proof : Let $\alpha_{i} \geq 2$ for at least two i 's, say $\alpha_{1}, \alpha_{2} \geq 2$. Then the following five vertices, taken in order,

$$
\left\langle p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}}\right\rangle,\left\langle p_{1}{ }^{\alpha_{1}} p_{2}\right\rangle,\left\langle p_{1} p_{2}{ }^{\alpha_{2}-1} p_{3}{ }^{\alpha_{3}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}{ }^{\alpha_{2}}\right\rangle,\left\langle p_{1}{ }^{\alpha_{1}} p_{3}{ }^{\alpha_{3}}\right\rangle
$$

form an induced 5 -cycle in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$. As earlier, the adjacency and nonadjacency follows from Proposition 5.1.1. Hence, by strong perfect graph theorem, $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is not perfect. \square So, now we assume that $n=p_{1}{ }^{\alpha_{1}} p_{2} p_{3}$.

Lemma 5.2.4 If $n=p^{\alpha} q r$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle of length greater than 3.

Proof : If possible, let $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ has an induced odd cycle C : $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle \sim$ $\cdots \sim\left\langle x_{t}\right\rangle \sim\left\langle x_{1}\right\rangle$, where $x_{i}=p^{\alpha_{i}} q^{\beta_{i}} r^{\gamma_{i}}$ for $i=1,2, \ldots, t$.

In the next two Claims, we prove that both β_{i} and γ_{i} can not be simultaneously 1.

Claim 1: For all $i \in\{1,2, \ldots, t\}$, either $\alpha_{i}<\alpha / 2$ or one of $\beta_{i}, \gamma_{i} \neq 1$.
Proof of Claim 1: If possible let $\alpha_{i} \geq \alpha / 2$ and $\beta_{i}=\gamma_{i}=1$. Now $\left\langle x_{i}\right\rangle \nsim$ $\left\langle x_{i+2}\right\rangle$ and $\left\langle x_{i}\right\rangle \nsim\left\langle x_{i+3}\right\rangle$ imply $\alpha_{i+2}, \alpha_{i+3}<\alpha / 2$, hence $\alpha_{i+2}+\alpha_{i+3}<\alpha$, which is a contradiction as $\left\langle x_{i+2}\right\rangle \sim\left\langle x_{i+3}\right\rangle$.

Claim 2: For all $i \in\{1,2, \ldots, t\}$, either $\alpha_{i}>\alpha / 2$ or one of $\beta_{i}, \gamma_{i} \neq 1$.
Proof of Claim 2: Without loss of generality let $\alpha_{1} \leq \alpha / 2$ and $\beta_{1}=\gamma_{1}=$ 1. Now $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$ and $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$ imply $\alpha_{2}, \alpha_{t} \geq \alpha / 2$. As $\left\langle x_{2}\right\rangle \nsim\left\langle x_{t}\right\rangle$ then either $\beta_{2}+\beta_{t}=0$ or $\gamma_{2}+\gamma_{t}=0$ or both. Again without loss of generality
we can take $\beta_{2}+\beta_{t}=0$, i.e., $\beta_{2}=\beta_{t}=0$ and hence $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle$ and $\left\langle x_{t}\right\rangle \sim\left\langle x_{t-1}\right\rangle$ imply $\beta_{3}=1=\beta_{t-1}$. Now $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$ and $\left\langle x_{1}\right\rangle \nsim\left\langle x_{4}\right\rangle$ imply $\alpha_{1}+\alpha_{t} \geq \alpha$ and $\alpha_{1}+\alpha_{4}<\alpha$. From these two equations we have $\alpha_{t}>\alpha_{4}$. Therefore $\alpha_{3}+\alpha_{4} \geq \alpha$ imply $\alpha_{3}+\alpha_{t}>\alpha$. So $\left\langle x_{t}\right\rangle \nsim\left\langle x_{3}\right\rangle$ and $\beta_{3}=1$ imply $\gamma_{t}+\gamma_{3}=0$, i.e., $\gamma_{3}=\gamma_{t}=0$. Therefore $\gamma_{t-1}=1$. As $\left\langle x_{2}\right\rangle \nsim\left\langle x_{t-1}\right\rangle$ and $\beta_{t-1}=\gamma_{t-1}=1$ hence $\alpha_{2}+\alpha_{t-1}<\alpha$ and we know $\alpha_{1}+\alpha_{2} \geq \alpha$. From these two equations we have $\alpha_{1}>\alpha_{t-1}$. So $\alpha_{t-1}+\alpha_{t-2} \geq \alpha$ imply $\alpha_{1}+\alpha_{t-2}>\alpha$ and $\beta_{1}=\gamma_{1}=1$, so we have $\left\langle x_{1}\right\rangle \sim\left\langle x_{t-2}\right\rangle$, which is a contradiction.

From Claim 1 and Claim 2 we see that for any i, both β_{i} and γ_{i} can not be 1. Similarly, it can be shown that both β_{i} and γ_{i} can not be 0 , because in that case, we must have $\beta_{i+1}=\gamma_{i+1}=1$, a contradiction.

Claim 3: For all $i \in\{1,2, \ldots, t\}, \alpha_{i}>\alpha / 2$.
Proof of Claim 3: Without loss of generality let $\alpha_{1} \leq \alpha / 2$ and $\beta_{1}=$ $1, \gamma_{1}=0$. Now $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$ and $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$ imply $\alpha_{2}, \alpha_{t} \geq \alpha / 2$ and $\gamma_{2}=\gamma_{t}=1 . \operatorname{As}\left\langle x_{2}\right\rangle \nsim\left\langle x_{t}\right\rangle, \alpha_{2}+\alpha_{t} \geq \alpha$ and $\gamma_{2}+\gamma_{t}=2$, we have $\beta_{2}+\beta_{t}=0$, i.e., $\beta_{2}=\beta_{t}=0$. Hence $\beta_{3}=\beta_{t-1}=1$. Now $\left\langle x_{3}\right\rangle \nsim\left\langle x_{t}\right\rangle$ and $\beta_{3}=1=\gamma_{t}$ imply $\alpha_{3}+\alpha_{t}<\alpha$ and $\alpha_{2}+\alpha_{3} \geq \alpha$, hence $\alpha_{2}>\alpha_{t}$. Therefore $\alpha_{t}+\alpha_{t-1} \geq \alpha$ implies $\alpha_{2}+\alpha_{t-1}>\alpha$. So $\beta_{t-1}=\gamma_{2}=1$ imply $\left\langle x_{2}\right\rangle \sim\left\langle x_{t-1}\right\rangle$, which is impossible and hence the Claim holds.

So from the Claim 1, 2 and 3 , we can consider $\alpha_{1}>\alpha / 2, \beta_{1}=1$ and $\gamma_{1}=0$. Again, from Claim 3 we have $\alpha_{3}, \alpha_{4}>\alpha / 2$. So $\left\langle x_{1}\right\rangle \nsim\left\langle x_{3}\right\rangle$, $\alpha_{1}+\alpha_{3}>\alpha$ and $\beta_{1}=1$ imply $\gamma_{1}+\gamma_{3}=0$, i.e., $\gamma_{3}=0$, i.e., $\gamma_{4}=1$. Therefore $\alpha_{1}+\alpha_{4}>\alpha$ and $\beta_{1}=\gamma_{4}=1$ imply $\left\langle x_{1}\right\rangle \sim\left\langle x_{4}\right\rangle$, which is a
contradiction. This completes the proof.

Lemma 5.2.5 If $n=p^{\alpha}$ qr, then $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle of length greater than 3 .

Proof : We start by noting that $\langle a\rangle \sim\langle b\rangle$ in $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$ if and only if $n \nmid a b$. If possible, let $\mathbb{A}^{c}\left(\mathbb{Z}_{n}\right)$ has an induced odd cycle $C:\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle \sim \cdots \sim$ $\left\langle x_{t}\right\rangle \sim\left\langle x_{1}\right\rangle$, where $x_{i}=p^{\alpha_{i}} q^{\beta_{i}} r^{\gamma_{i}}$ for $i=1,2, \ldots, t$.

In the next two Claims, we prove that both β_{i} and γ_{i} can not be simultaneously 1.

Claim 1: For all $i \in\{1,2, \ldots, t\}$, either $\alpha_{i}<\alpha / 2$ or one of $\beta_{i}, \gamma_{i} \neq 1$.
Proof of Claim 1: If possible let $\alpha_{i} \geq \alpha / 2$ and $\beta_{i}=\gamma_{i}=1$. As $\left\langle x_{i-1}\right\rangle$ and $\left\langle x_{i+1}\right\rangle \sim\left\langle x_{i}\right\rangle$, hence $\alpha_{i-1}, \alpha_{i+1}<\alpha / 2$, i.e., $\alpha_{i-1}+\alpha_{i+1}<\alpha$ and hence $\left\langle x_{i-1}\right\rangle \sim\left\langle x_{i+1}\right\rangle$, which is a contradiction.

Claim 2: For all $i \in\{1,2, \ldots, t\}$, either $\alpha_{i}>\alpha / 2$ or one of $\beta_{i}, \gamma_{i} \neq 1$.
Proof of Claim 2: Without loss of generality let $\alpha_{1} \leq \alpha / 2$ and $\beta_{1}=$ $\gamma_{1}=1$. As $\left\langle x_{3}\right\rangle,\left\langle x_{4}\right\rangle \nsim\left\langle x_{1}\right\rangle$ hence $\alpha_{3}, \alpha_{4} \geq \alpha / 2$, i.e., $\alpha_{3}+\alpha_{4} \geq \alpha$. Now $\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle$ implies either $\beta_{3}+\beta_{4}=0$ or $\gamma_{3}+\gamma_{4}=0$ or both. Without loss of generality we can assume $\beta_{3}+\beta_{4}=0$, i.e., $\beta_{3}=0=\beta_{4}$. Now $\left\langle x_{2}\right\rangle \nsim\left\langle x_{4}\right\rangle$, $\beta_{4}=0$ imply $\beta_{2}=1$ and $\left\langle x_{3}\right\rangle \nsim\left\langle x_{t}\right\rangle, \beta_{3}=0$ imply $\beta_{t}=1$. Again $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$ and $\beta_{1}=1=\gamma_{1}$ imply $\alpha_{1}+\alpha_{2}<\alpha$. Therefore $\alpha_{2}+\alpha_{t} \geq \alpha$ implies $\alpha_{t}>\alpha_{1}$. So $\alpha_{1}+\alpha_{t-1} \geq \alpha$ imply $\alpha_{t}+\alpha_{t-1}>\alpha$. Now $\left\langle x_{t}\right\rangle \sim\left\langle x_{t-1}\right\rangle$ and $\beta_{t}=1$ imply $\gamma_{t}+\gamma_{t-1}=0$, i.e., $\gamma_{t}=0$. Again $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$ and $\beta_{1}=1=\gamma_{1}$ imply $\alpha_{1}+\alpha_{t}<\alpha$. So $\alpha_{2}+\alpha_{t} \geq \alpha$ imply $\alpha_{2}>\alpha_{1}$. So $\alpha_{1}+\alpha_{3} \geq \alpha$ imply
$\alpha_{2}+\alpha_{3}>\alpha$. Now $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle$ and $\beta_{2}=1$ imply $\gamma_{2}+\gamma_{3}=0$, i.e., $\gamma_{2}=0$. Therefore $\gamma_{2}=0=\gamma_{t}$ implies $\left\langle x_{2}\right\rangle \sim\left\langle x_{t}\right\rangle$, which is impossible.

From Claim 1 and Claim 2 we see that for any i, both β_{i} and γ_{i} can not be 1. Similarly, it can be shown that both β_{i} and γ_{i} can not be 0 , because in that case, we must have $\beta_{i+2}=\gamma_{i+2}=1$, a contradiction.

Claim 3: For all $i \in\{1,2, \ldots, t\}, \alpha_{i}>\alpha / 2$.
Proof of Claim 3: Without loss of generality let $\alpha_{1} \leq \alpha / 2$ and $\beta_{1}=$ $1, \gamma_{1}=0$. Therefore $\left\langle x_{3}\right\rangle,\left\langle x_{4}\right\rangle \nsim\left\langle x_{1}\right\rangle$ imply $\alpha_{3}, \alpha_{4} \geq \alpha / 2$ and $\gamma_{3}=1=\gamma_{4}$. So $\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle$ imply $\beta_{3}+\beta_{4}=0$, i.e., $\beta_{3}=0=\beta_{4}$. Now $\beta_{4}=0$ and $\left\langle x_{4}\right\rangle \nsim\left\langle x_{2}\right\rangle$ imply $\beta_{2}=1$. Now $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle$ and $\beta_{2}=1=\gamma_{3}$ imply $\alpha_{2}+\alpha_{3}<\alpha$. So $\alpha_{1}+\alpha_{3} \geq \alpha$ imply $\alpha_{1}>\alpha_{2}$. Also $\alpha_{2}+\alpha_{t} \geq \alpha$ imply $\alpha_{1}+\alpha_{t}>\alpha$. So $\left\langle x_{1}\right\rangle \nsim\left\langle x_{t}\right\rangle$ and $\beta_{1}=1$ imply $\gamma_{1}+\gamma_{t}=0$, i.e., $\gamma_{t}=0$, i.e., $\gamma_{2}=1$.Hence we have $\beta_{2}=1=\gamma_{2}$, which is not possible by Claim 2 and Claim 3.

So from the Claim 1, 2 and 3, we can consider $\alpha_{1}>\alpha / 2, \beta_{1}=1$ and $\gamma_{1}=0$. So $\left\langle x_{3}\right\rangle,\left\langle x_{4}\right\rangle \nsim\left\langle x_{1}\right\rangle$ imply $\gamma_{3}=1=\gamma_{4}$. Again from Claim 3 we have $\alpha_{3}, \alpha_{4}>\alpha / 2$. So $\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle$ implies $\beta_{3}+\beta_{4}=0$, i.e., $\beta_{3}=0=\beta_{4}$. Now $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle, \gamma_{3}=1$ and $\alpha_{2}, \alpha_{3}>\alpha / 2$ imply $\beta_{2}+\beta_{3}=0$, i.e., $\beta_{2}=0$. Therefore $\beta_{2}=0=\beta_{4}$ imply $\left\langle x_{2}\right\rangle \sim\left\langle x_{4}\right\rangle$, which is a contradiction and this completes the proof.

Thus, it follows from strong perfect graph theorem and Lemma 5.2.4 and Lemma 5.2.5, that if $n=p^{\alpha} q r$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect.

Thus, the case when n has three distinct prime factors is complete. Now,
we focus on the case, when n has two distinct prime factors.
Lemma 5.2.6 If $n=p^{\alpha} q^{\beta}$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle of length greater than 3.

Proof : If possible, let $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ have an induced odd cycle $C:\left\langle x_{1}\right\rangle \sim$ $\left\langle x_{2}\right\rangle \sim \cdots \sim\left\langle x_{t}\right\rangle \sim\left\langle x_{1}\right\rangle$, where $x_{i}=p^{\alpha_{i}} q^{\beta_{i}}$ for $i=1,2, \ldots, t$.

Claim 1: For all $i \in\{1,2, \ldots, t\}$, either $\alpha_{i}>\alpha / 2$ or $\beta_{i}>\beta / 2$.
Proof of Claim 1: If $\alpha_{i} \leq \alpha / 2$ and $\beta_{i} \leq \beta / 2$ for some i, then as $\left\langle x_{i}\right\rangle \sim$ $\left\langle x_{i+1}\right\rangle$, we have $\alpha_{i+1} \geq \alpha / 2$ and $\beta_{i+1} \geq \beta / 2$. Similarly, as $\left\langle x_{i}\right\rangle \sim\left\langle x_{i-1}\right\rangle$, we have $\alpha_{i-1} \geq \alpha / 2$ and $\beta_{i-1} \geq \beta / 2$. But this implies $\alpha_{i+1}+\alpha_{i-1} \geq \alpha$ and $\beta_{i+1}+\beta_{i-1} \geq \beta$, i.e., $\left\langle x_{i-1}\right\rangle \sim\left\langle x_{i+1}\right\rangle$, a contradiction. Thus the claim holds.

In Claim 1, we show that for any i, either α_{i} or β_{i} is greater than $\alpha / 2$ or $\beta / 2$ respectively. In the next claim, we show that both of them can not be greater or equal to $\alpha / 2$ and $\beta / 2$ simultaneously.

Claim 2: For any $i \in\{1, \ldots, t\}$, both $\alpha_{i} \geq \alpha / 2$ and $\beta_{i} \geq \beta / 2$ can not hold.

Proof of Claim 2: Without loss of generality, suppose $\alpha_{1} \geq \alpha / 2$ and $\beta_{1} \geq \beta / 2$. As $\left\langle x_{1}\right\rangle \nsim\left\langle x_{3}\right\rangle$, we have either $\alpha_{1}+\alpha_{3}<\alpha$ or $\beta_{1}+\beta_{3}<\beta$, i.e., $\alpha_{3}<\alpha / 2$ or $\beta_{3}<\beta / 2$. Again, without loss of generality, we assume that $\alpha_{3}<\alpha / 2$. So, by Claim 1 , we get $\beta_{3}>\beta / 2$. As $\left\langle x_{3}\right\rangle$ is adjacent to both $\left\langle x_{2}\right\rangle$ and $\left\langle x_{4}\right\rangle$, we have $\alpha_{2}, \alpha_{4}>\alpha / 2$. As $\left\langle x_{1}\right\rangle \nsim\left\langle x_{4}\right\rangle$ and $\alpha_{1}, \alpha_{4} \geq \alpha / 2$ and $\beta_{1} \geq \beta / 2$, we have $\beta_{4}<\beta / 2$. Again as $\left\langle x_{4}\right\rangle \sim\left\langle x_{5}\right\rangle$, we have $\beta_{5}>\beta / 2$.

Here C is a t-cycle with t odd and $t \geq 5$. We show, by strong induction, that for any odd value of $t \geq 5$, we get a contradiction.

We start with $t=5$, i.e., $\left\langle x_{1}\right\rangle \sim\left\langle x_{5}\right\rangle$. As $\left\langle x_{1}\right\rangle \nsim\left\langle x_{4}\right\rangle$ and $\alpha_{1}, \alpha_{4} \geq \alpha / 2$, we have $\beta_{1}+\beta_{4}<\beta$. Again as $\left\langle x_{4}\right\rangle \sim\left\langle x_{5}\right\rangle$, we have $\beta_{4}+\beta_{5} \geq \beta$. Thus, we get $\beta_{5}>\beta_{1}$. As $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$, we have $\beta_{1}+\beta_{2} \geq \beta$, i.e., $\beta_{2}+\beta_{5}>\beta$. Thus as $\left\langle x_{2}\right\rangle \nsim\left\langle x_{5}\right\rangle$, we must have $\alpha_{2}+\alpha_{5}<\alpha$. Also, as $\left\langle x_{1}\right\rangle \sim\left\langle x_{5}\right\rangle$, we have $\alpha_{1}+\alpha_{5} \geq \alpha$. Thus we must have $\alpha_{1}>\alpha_{2}$. Similarly, $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle$ implies $\alpha_{2}+\alpha_{3} \geq \alpha$, i.e., $\alpha_{1}+\alpha_{3}>\alpha$. On the other hand, as $\beta_{1}, \beta_{3} \geq \beta / 2$, we have $\beta_{1}+\beta_{3} \geq \beta$. Thus we have $\left\langle x_{1}\right\rangle \sim\left\langle x_{3}\right\rangle$. Hence we get a contradiction for $t=5$.

For $t>5$, as $\left\langle x_{1}\right\rangle \nsim\left\langle x_{5}\right\rangle$ and $\beta_{1}, \beta_{5} \geq \beta / 2$ and $\alpha_{1} \geq \alpha / 2$, we have $\alpha_{5}<\alpha / 2$. Thus the induction hypothesis is: For all odd k satisfying $1<$ $k<t-2$,
$\alpha_{i}<\alpha / 2,1<i \leq k, i$ is odd \quad and $\quad \beta_{i} \geq \beta / 2,1 \leq i \leq k, i$ is odd $\alpha_{j} \geq \alpha / 2,2<j \leq k-1, j$ is even and $\beta_{j}<\beta / 2,2<j \leq k-1, j$ is even

Now $\left\langle x_{k+1}\right\rangle \sim\left\langle x_{k}\right\rangle$ and $\alpha_{k}<\alpha / 2$ imply $\alpha_{k+1}>\alpha / 2$. Similarly, $\left\langle x_{1}\right\rangle \nsim$ $\left\langle x_{k+1}\right\rangle$ and $\beta_{1} \geq \beta / 2$ implies $\beta_{k+1}<\beta / 2$ and $\left\langle x_{k+1}\right\rangle \sim\left\langle x_{k+2}\right\rangle$ implies $\beta_{k+2}>\beta / 2$. As $k+2 \leq t-2$, we have $\left\langle x_{1}\right\rangle \nsim\left\langle x_{k+2}\right\rangle$ and $\beta_{1}, \beta_{k+2}>\beta / 2$, which implies $\alpha_{k+2}<\alpha / 2$. Thus, by induction, we have

For odd i with $1<i<t, \alpha_{i}<\alpha / 2$ and, for odd i with $1 \leq i \leq t, \beta_{i} \geq \beta / 2$ For even j with $j>2, \alpha_{j} \geq \alpha / 2$ and $\beta_{j}<\beta / 2$.

Now, $\left\langle x_{2}\right\rangle \nsim\left\langle x_{t}\right\rangle$ implies either $\beta_{2}+\beta_{t}<\beta$ or $\alpha_{2}+\alpha_{t}<\alpha$ or both. As t is odd, $t-1$ is even and hence $\alpha_{1}, \alpha_{t-1} \geq \alpha / 2$ and $\beta_{1}>\beta / 2$. Thus
$\left\langle x_{1}\right\rangle \nsim\left\langle x_{t-1}\right\rangle$ implies $\beta_{1}+\beta_{t-1}<\beta$ and $\left\langle x_{t}\right\rangle \sim\left\langle x_{t-1}\right\rangle$ implies $\beta_{t}+\beta_{t-1} \geq \beta$. Therefore $\beta_{t}>\beta_{1}$.

Again $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$ implies $\beta_{1}+\beta_{2} \geq \beta$, i.e., $\beta_{t}+\beta_{2}>\beta$. Now, as $\left\langle x_{2}\right\rangle \nsim\left\langle x_{t}\right\rangle$, we must have $\alpha_{2}+\alpha_{t}<\alpha$.

Also $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$ implies $\alpha_{1}+\alpha_{t} \geq \alpha$. Therefore $\alpha_{1}>\alpha_{2}$. Similarly $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle$ implies $\alpha_{2}+\alpha_{3} \geq \alpha$. Thus $\alpha_{1}+\alpha_{3}>\alpha$. Again, as $\beta_{1}, \beta_{3}>\beta / 2$, we have $\left\langle x_{1}\right\rangle \sim\left\langle x_{3}\right\rangle$, a contradiction. Hence Claim 2 holds.

From Claim 1 and 2, we see that for any i, both α_{i}, β_{i} can not be simultaneously 'greater or equal' or 'lesser or equal' to $\alpha / 2$ and $\beta / 2$ respectively. So for any i, either $\alpha_{i}<\alpha / 2, \beta_{i}>\beta / 2$ or $\alpha_{i}>\alpha / 2, \beta_{i}<\beta / 2$ holds. Without loss of generality, let $\alpha_{1}<\alpha / 2$ and $\beta_{1}>\beta / 2$.

Now, as $\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$, we have $\alpha_{1}+\alpha_{2} \geq \alpha$, which implies $\alpha_{2}>\alpha / 2$, i.e., $\beta_{2}<\beta / 2$ (by Claim 2). Similarly $\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle$ implies $\beta_{3}>\beta / 2$, i.e., $\alpha_{3}<\alpha / 2$ (by Claim 2). Proceeding this way, we get

If i is odd, $\alpha_{i}<\alpha / 2$ and $\beta_{i}>\beta / 2$
If i is even, $\alpha_{i}>\alpha / 2$ and $\beta_{i}<\beta / 2$

As t is odd, we have $\alpha_{t}<\alpha / 2$. Also, as $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$, we have $\alpha_{1}+\alpha_{t} \geq \alpha$. However as $\alpha_{1}, \alpha_{t}<\alpha / 2$, we get a contradiction. Thus $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle of length greater than 3 .

Lemma 5.2.7 If $n=p^{\alpha} q^{\beta}$, then $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle of length greater than 3 .

Proof : We start by noting that $\langle a\rangle \sim\langle b\rangle$ in $\mathbb{A}^{c}\left(\mathbb{Z}_{n}\right)$ if and only if $n \nmid a b$.

If possible, let $\mathbb{A}^{c}\left(\mathbb{Z}_{n}\right)$ has an induced odd cycle $C:\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle \sim \cdots \sim$ $\left\langle x_{t}\right\rangle \sim\left\langle x_{1}\right\rangle$, where $x_{i}=p^{\alpha_{i}} q^{\beta_{i}}$ for $i=1,2, \ldots, t$.

Claim 1: For all $i \in\{1,2, \ldots, t\}$, either $\alpha_{i}>\alpha / 2$ or $\beta_{i}>\beta / 2$.
Proof of Claim 1: If $\alpha_{i} \leq \alpha / 2$ and $\beta_{i} \leq \beta / 2$ for some i, then as $\left\langle x_{i}\right\rangle \nsim$ $\left\langle x_{i+2}\right\rangle$ and $\left\langle x_{i}\right\rangle \nsim\left\langle x_{i+3}\right\rangle$, we have $\alpha_{i+2}, \alpha_{i+3} \geq \alpha / 2$ and $\beta_{i+2}, \beta_{i+3} \geq \beta / 2$. But this imply that $\left\langle x_{i+2}\right\rangle \nsim\left\langle x_{i+3}\right\rangle$ in $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$, a contradiction. Hence Claim 1 holds. In Claim 1, we show that for any i, either α_{i} or β_{i} is greater than $\alpha / 2$ or $\beta / 2$ respectively. In the next claim, we show that both of them can not be greater or equal to $\alpha / 2$ and $\beta / 2$ simulatneously.

Claim 2: For any i, both $\alpha_{i} \geq \alpha / 2$ and $\beta_{i} \geq \beta / 2$ can not hold.
Proof of Claim 2: Without loss of generality, suppose $\alpha_{1} \geq \alpha / 2$ and $\beta_{1} \geq \beta / 2 . \quad\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle$ implies either $\alpha_{1}+\alpha_{2}<\alpha$ or $\beta_{1}+\beta_{2}<\beta$ or both. Again, without loss of generality, we assume that $\alpha_{1}+\alpha_{2}<\alpha$, i.e., $\alpha_{2}<\alpha / 2$. Now $\left\langle x_{2}\right\rangle \nsim\left\langle x_{t}\right\rangle$ implies $\alpha_{2}+\alpha_{t} \geq \alpha$, i.e., $\alpha_{t}>\alpha / 2$.

At first we assume that $t=5$. Therefore $\left\langle x_{1}\right\rangle \sim\left\langle x_{5}\right\rangle$ and $\alpha_{1}, \alpha_{5} \geq \alpha / 2$ imply $\beta_{1}+\beta_{5}<\beta$. Now $\left\langle x_{1}\right\rangle \nsim\left\langle x_{3}\right\rangle$ imply $\alpha_{1}+\alpha_{3} \geq \alpha$, so $\alpha_{1}+\alpha_{2}<\alpha$ implies $\alpha_{3}>\alpha_{2}$. Again $\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle$ imply either $\alpha_{3}+\alpha_{4}<\alpha$ or $\beta_{3}+\beta_{4}<\beta$ or both. Now $\left\langle x_{2}\right\rangle \nsim\left\langle x_{4}\right\rangle$ imply $\alpha_{2}+\alpha_{4} \geq \alpha$. If $\alpha_{3}+\alpha_{4}<\alpha$, then we have $\alpha_{2}>\alpha_{3}$, which is a contradiction as we already have $\alpha_{3}>\alpha_{2}$. Now $\left\langle x_{1}\right\rangle \nsim\left\langle x_{4}\right\rangle$ implies $\beta_{1}+\beta_{4} \geq \beta$. If $\beta_{3}+\beta_{4}<\beta$, then we have $\beta_{1}>\beta_{3}$. Now $\left\langle x_{3}\right\rangle \nsim\left\langle x_{5}\right\rangle$ implies $\beta_{3}+\beta_{5} \geq \beta$, therefore $\beta_{1}+\beta_{5}>\beta$, which contradicts the condition $\beta_{1}+\beta_{5}<\beta$. So for $t=5$ the Claim 2 is true.

Now assume that $t>5$. As $\alpha_{1}, \alpha_{t} \geq \alpha / 2$ and $\left\langle x_{1}\right\rangle \sim\left\langle x_{t}\right\rangle$, we have
$\beta_{1}+\beta_{t}<\beta$, i.e., $\beta_{t}<\beta / 2$ as $\beta_{1} \geq \beta / 2$. Now $\alpha_{2}<\alpha / 2$ and $\left\langle x_{4}\right\rangle,\left\langle x_{5}\right\rangle \nsim\left\langle x_{2}\right\rangle$ imply $\alpha_{4}, \alpha_{5}>\alpha / 2$, hence $\alpha_{4}+\alpha_{5}>\alpha$. Again $\beta_{t}<\beta / 2$ and $\left\langle x_{4}\right\rangle,\left\langle x_{5}\right\rangle \nsim$ $\left\langle x_{t}\right\rangle$ imply $\beta_{4}, \beta_{5}>\beta / 2$, hence $\beta_{4}+\beta_{5}>\beta$, which is a contradiction as $\left\langle x_{4}\right\rangle \sim\left\langle x_{5}\right\rangle$. Hence Claim 2 holds for all odd $t \geq 5$.

From Claim 1 and 2, we see that for any i, both α_{i}, β_{i} can not be simultaneously 'greater or equal' or 'lesser or equal' to $\alpha / 2$ and $\beta / 2$ respectively. So for any i, either $\alpha_{i}<\alpha / 2, \beta_{i}>\beta / 2$ or $\alpha_{i}>\alpha / 2, \beta_{i}<\beta / 2$ holds. Without loss of generality, let $\alpha_{1}<\alpha / 2$ and $\beta_{1}>\beta / 2$.

Now $\left\langle x_{3}\right\rangle,\left\langle x_{4}\right\rangle \nsim\left\langle x_{1}\right\rangle$ imply $\alpha_{3}, \alpha_{4}>\alpha / 2$ and hence by Claim 2 we have $\beta_{3}, \beta_{4}<\beta / 2$. As $\left\langle x_{2}\right\rangle \nsim\left\langle x_{4}\right\rangle$, so $\beta_{2}>\beta / 2$ and by Claim 2 we have $\alpha_{2}<\alpha / 2$. Now $\left\langle x_{2}\right\rangle \nsim\left\langle x_{5}\right\rangle$ implies $\alpha_{5}>\alpha / 2$. Then by Claim 2 we have $\beta_{5}<\beta / 2$, but $\beta_{3}<\beta / 2$ imply $\beta_{3}+\beta_{5}<\beta$, which is a contradiction as $\left\langle x_{3}\right\rangle \nsim\left\langle x_{5}\right\rangle$. Thus $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle of length greater than 3.

Thus from Lemma 5.2.6 and Lemma 5.2.7, we have if $n=p^{\alpha} q^{\beta}$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect.

Now, we deal with the last case when n is a prime power.

Lemma 5.2.8 If $n=p^{\alpha}$, then $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect.
Proof : In this case, the vertices are $\langle p\rangle,\left\langle p^{2}\right\rangle, \ldots,\left\langle p^{\alpha-1}\right\rangle$ and two vertices $\left\langle p^{k}\right\rangle$ and $\left\langle p^{l}\right\rangle$ are adjacent in $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ if and only if $k+l \geq \alpha$.

If possible, let $C:\left\langle p^{k_{1}}\right\rangle \sim\left\langle p^{k_{2}}\right\rangle \sim \cdots \sim\left\langle p^{k_{t}}\right\rangle \sim\left\langle p^{k_{1}}\right\rangle$ be an induced odd cycle of length $t \geq 5$. Then from adjacency and non-adjacency conditions, we have the following two sets of relations. Adding them, we get a
contradiction:

$$
\begin{array}{cc}
k_{1}+k_{2} \geq \alpha & k_{1}+k_{3}<\alpha \\
k_{2}+k_{3} \geq \alpha & k_{2}+k_{4}<\alpha \\
\vdots & \vdots \\
k_{t-1}+k_{t} \geq \alpha & k_{t-1}+k_{1}<\alpha \\
k_{t}+k_{1} \geq \alpha & k_{t}+k_{2}<\alpha
\end{array}
$$

$$
2\left(k_{1}+k_{2}+\cdots+k_{t}\right) \geq t \alpha \quad 2\left(k_{1}+k_{2}+\cdots+k_{t}\right)<t \alpha
$$

Thus $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ has no induced odd cycle C of length $t \geq 5$. Proceeding similarly, it can be shown that $\mathbb{A} \mathbb{G}^{c}\left(\mathbb{Z}_{n}\right)$ also has no induced odd cycle of length $t \geq 5$. Hence $\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ is perfect.

Combining all the results in this section, we get the proof of Theorem 5.1.1.

