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6.1. Introduction 

The interaction of gallic acid (GA), a well-known polyphenol (sub-class: hydroxybenzoic acid), 

with DNA has been explored with the help of spectroscopic and theoretical methods. GA 

(Structure. 6.1) is predominantly present in green tea, different berries, mango, areca nut, wine, 

etc., and shows a wide variety of bioactivities such as antioxidant, anticancer, antimicrobial, anti-

inflammatory etc. [Samuel et al., 2017; Abbasi et al., 2015; Albuquerque et al., 2021; 

Kahkeshani et al., 2019]. GA and its derivatives can prevent the oxidation and rancidity in oils 

and fats due to their free radical scavenging and antioxidant properties, and thus are 

recommended to be useful as food additives [Kahkeshani et al., 2019]. Previously, some works 

have compared the interaction of GA and other phenolic acids with DNA. Labieniec et.al. have 

reported that the binding affinity of GA with DNA is significantly less than other tested phenolic 

acids (tannic acid and ellagic acid) using fluorescence spectroscopic tool [Labieniec et al., 2006]. 

A better binding efficacy of GA compared to citric acid was reported by Chanphai et al. using 

UV-Vis experiments [Chanphai et al., 2022]. However, a detailed insight into the interaction of 

GA with DNA on molecular view is still rare. In the present work we have utilized spectroscopic 

methods such as fluorescence quenching, anisotropy measurements, DNA melting studies, 

circular dichroism, etc., to establish the interaction mechanism of GA-DNA system.  Further, we 

have performed molecular docking studies to support our experimental findings.  The current 

study on the interaction of GA with DNA is significant in terms of the potential applications of 

GA in different sectors. Besides, the significant observation acquired from these biophysical 

studies could be further extended to other phenolic acids to understand their molecular level 

mechanism. 

 

Structure 6.1. The chemical structure of GA 
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6.2. Materials and methods  

6.2.1. Materials 

Calf thymus DNA (ct-DNA), Ethidium bromide (EB) and potassium iodide (KI) were purchased 

from Sisco Research Laboratories (SRL, India) and used as received. Gallic acid (≥99.5%, 

powder) was purchased from Sigma-Aldrich, India and use after recrystallization in ethanol. 

Sodium chloride (NaCl) was purchased from Merck, India and used without further purification. 

Tris(hydroxymethyl)aminomethane (tris-HCl buffer) were purchased from Sigma-Aldrich, USA 

and 10 mM tris-HCl buffer of pH ~ 7.4 was prepared in triple distilled water. GA was dissolve in 

tris-HCl buffer. Stock solution of ct-DNA was prepared by dissolving the solid ct-DNA in 10 

mM tris-HCl buffer and stored at 4 ºC for further use. The purity of ct-DNA was verified by 

monitoring the ratio of absorbance at 260 nm to that at 280 nm, which was in the range 1.8-1.9. 

The concentration of ct-DNA solution was determined by spectrophotometrically using molar 

absorption coefficient (ε260 = 6600 L mol
-1

 cm
-1

) [Zhou et al., 2015]. Freshly prepared solutions 

were used for all the measurements.  

 

6.2.2. Methods 

6.2.2.1. Steady state fluorescence studies 

To elucidate the binding interaction between GA and ct-DNA, steady state emission spectra and 

fluorescence anisotropy measurements were obtained with a Cary Eclipse fluorescence 

spectrophotometer (model G9800A) using 1.0 cm quartz cells. DNA does not show any 

endogenous fluorescence emission property and hence, the fluorescence emission of GA was 

monitored for the interaction between drug and DNA. The emission measurements of GA (25 

µM) with varying concentrations of ct-DNA (0-100 µM) were made by exciting the samples at 

260 nm. As the GA and ct-DNA show the same peak region in the UV-vis measurements, hence 

in the emission spectroscopy we have to correct the emission spectra to minimise the absorption 

contribution of ct-DNA. The fluorescence intensities were corrected for absorption of excited 

light and re-absorption of excitation light using the following equation [Lakowicz, 2006; Paul et 

al., 2017].   
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where, Fcorr and Fobs are the corrected fluorescence intensity and observed background-subtracted 

fluorescence intensity of the sample under investigation, respectively; ODex and ODem are the 

measured absorbance of the sample at the excitation and emission wavelengths, respectively 

[Lakowicz, 2006; Masum et al., 2014]. Emission and excitation studies were performed at room 

temperature. For fluorescence anisotropy measurements, the parallel and perpendicular emission 

polarizations were controlled using polarizer (cf. section 6.3.1.). 

 

6.2.2.2. Circular Dichroism (CD) studies 

CD measurements were performed on a JASCO J-815 spectrometer using a rectangular quartz 

cuvette of path length 1 cm at room temperature. The spectra were measured in the range of 220-

350 nm. The CD profiles were taken an average of three successive scan with 20 nm per minute 

scan time and before measurements baseline was corrected appropriately. The response time was 

4 s. During the experiments, the concentration of ct-DNA was fixed at 100 µM. The different 

sets of solutions with different ct-DNA to drug ratios (1:0, 1:0.5, 1:1) were prepared. 

 

6.2.2.3. DNA melting studies 

The DNA double helix melting temperature was determined using UV-Vis spectroscopy (Hitachi 

U-2910) by taking the absorbance at 260 nm in presence and absence of GA over a wide range of 

temperature from 35 °C to 90 °C. The sample contained ct-DNA (50 µM) alone and GA (50 

µM)-ct-DNA (50 µM) complex in Tris-HCl buffer (pH 7.4 and 10 mM). The melting 

temperature (Tm) was determined by the following equation:  

    
    

     
                                                                                 

where, fss corresponds to ct-DNA fraction as single strand, A0 and Af are the initial and final 

absorbance intensities respectively, A is the absorbance intensity corresponding to its 

temperature. The melting temperature (Tm) was determined from the midpoints of the curve 

based on fss versus temperature (T) plot [Silva et al., 2017]. 
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6.2.2.4. Viscosity measurement studies 

The viscosity measurements were performed with Ostwald viscometer immersed in the water 

bath at 30 °C and GA concentration was increased (0 µM, 5 µM, 10 µM, 15µM, 20 µM, 25 µM) 

with a fixed ct-DNA concentration (50 µM). The analysis was performed in triplicate and the 

flow time was measured using a digital stopwatch with an accuracy of ±0.2 second to evaluate 

the viscosity of free ct-DNA and GA-ct-DNA complex in a different molar ratio of GA to ct-

DNA ([GA]/[ct-DNA]). The obtained data were presented as (η/η0)
1/3 

versus the ratio of 

[GA]/[ct-DNA], where η and η0 are the viscosity of free ct-DNA and GA-ct-DNA complex 

respectively [Husain et al., 2017]. 

 

6.2.2.5. Potassium iodide (KI) quenching studies 

Iodide quenching experiments were performed on the same fluorescence spectrophotometer as 

described above. The quenching study was performed in GA and GA-ct-DNA ([GA] = 20 µM; [ct-

DNA] = 40 µM) complex solution by titrating with various concentration of KI (0-20 mM). The 

quenching constants (KSV) for free and ct-DNA bound GA were calculated using Stern-Volmer 

equation [Lakowicz, 2006].  

  

 
      [ ]                                                                                                                              

where, F0 and F are the fluorescence intensities of free GA and ct-DNA-GA complex in the 

absence and presence of KI, respectively, and [Q] is the concentration of KI. KSV is the Stern-

Volmer quenching constant. 

 

6.2.2.6. Competitive Displacement studies 

A competitive displacement experiment was performed using a well-known intercalating probe 

ethidium bromide (EB). This experiment was carried out by adding a fixed amount of ct-DNA 

(75 µM) to EB (5 µM) solution and the mixture was titrated against the increasing concentration 

of GA (0-140 µM). The EB-ct-DNA complex was excited at 480 nm and the emission spectra 

were recorded in the region of 490 nm-800 nm [Mondal et al., 2021; Ramana et al., 2016]. 
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6.2.2.7. Steady-state fluorescence anisotropy studies 

Steady-state fluorescence anisotropy (r) measurements were performed on an Cary Eclipse 

fluorescence spectrophotometer (G9800A) equipped with a 1.0 cm path-length of rectangular 

quartz cell and a pair of polariser was used with excitation and emission wavelengths set to 257 

nm and 353 nm respectively. The excitation and emission bandwidths were set as 10 nm and 5 

nm respectively. The r was then calculated by the following equations [Banerjee et al., 2012]: 

                                                                                                    

  
   

   
                                                                                                                                   

where, I is the fluorescence emission intensity and the suffix VV denotes both the excitation and 

emission polarizers to be vertically aligned and VH indicates a vertically aligned excitation 

polarizer and horizontally aligned emission polarizer, HV corresponds to horizontally polarized 

excitation and vertically polarized excitation and so on. G is the correction factor. Titrations were 

carried out by various concentration of ct-DNA ranging from 0-100 µM with a fixed 

concentration of GA (30 µM) solution. 

 

6.2.2.8. Molecular Docking Studies 

To understand the site of binding when GA interacts with ct-DNA, molecular docking study was 

carried out. The three-dimensional structure of GA was prepared and optimized in Avogadro 

software [Hanwell et al., 2012] in order to obtain the lowest energy structure of the ligand. The 

DNA structure was downloaded from RCSB [Neidle et al., 1999] (PDB ID: 453D) and the 

docking study was carried out using AutoDock Vina [Trott et al., 2010] after removing the 

ligands from the PDB file. The grid size used in this case was 20×22×42 Å with centre at x = 

15.115; y = 20.786; z = 8.718. Out of multiple docked structures, the GA-ct-DNA bound 

structure with the lowest energy (highest negative ΔG value) was selected for the study. Analysis 

of neighboring DNA base pairs, H-bonding calculation and RMSD calculation were carried out 

using UCSF Chimera software [Pettersen et al., 2004]. 
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6.3. Results and discussions  

6.3.1. Analysis of steady state fluorescence studies 

Due to the similarity of the absorbance region of GA (λmax = 255 nm, inset of Fig. 6.1) and DNA 

(λmax = 260 nm) [Mondal et al., 2021], the UV-Vis titration experiment washampered (data not 

shown). Thus, we resorted to only fluorescence titration experiment with GA and DNA. As 

already mentioned in Section 6.2.2.1, the possibility of re-absorption and inner filter effect was 

removed by applying Equation 6.1. Gradual addition of ct-DNA enhanced the fluorescence 

intensity of GA. Thus, an indication of some sort of complexation and structural change of GA in 

ct-DNA environment (vide Fig. 6.1) was evident. The observation was further supported by 

theoretical studies.  

 

Figure 6.1. Fluorescence titration spectra of GA (25 µM) with various concentration of ct-DNA 

(0-100 µM). (inset: absorption spectra of free gallic acid) 
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6.3.2. Iodide quenching study 

Fluorescence quenching of small molecules by KI is a well-established method to primary 

characterize the binding type of small molecules to DNA. In brief, intercalating molecules are 

well protected into DNA base pairs and thus, its fluorescence is less quenched by KI. Whereas, 

groove/electrostatic binders are almost in an open position and thus, its fluorescence is well 

affected by KI [Mondal et al., 2021]. Thus, the amount of quenching by KI is comparable for 

both free molecule and DNA bound molecule, indicating the groove binding. In this view, the 

fluorescence quenching studies of GA were performed in the absence and presence of ct-DNA 

taking KI as quencher molecule and the results were quantified via Stern-Volmer equation 

[Lakowicz, 2006]. As can be evident from Fig. 6.2, KSV of the DNA bound GA (20 µM) was 

almost similar to that of free GA (20 µM). However, the investigating molecule, i.e., GA, is a 

negatively charged molecule and the nucleic acids are also highly negatively charged hence, the 

occurrence of electrostatic interaction can be ruled out. Thus, the experimental observations 

unambiguously established that the mode of binding of GA to ct-DNA is groove binding.  

 

Figure 6.2. Stern-Volmer quenching plot of GA (20 µM) by varying KI (0-0.009 M) 

concentration in the absence and presence of ct-DNA 
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6.3.3. Viscosity measurements  

Viscosity measurement is an authenticate technique for the evaluation of mode of binding 

between small molecule to ct-DNA [Mati et al., 2013]. When a classical intercalating ligand 

binds to ct-DNA, the nitrogen base pair of ct-DNA are separated to accommodate the 

intercalating ligand that leads to lengthening of the DNA helix, and hence, the viscosity of ct-

DNA increases. However, for groove binding, insignificant changes in the viscosity of ct-DNA 

are generally noticed. Hence, we have plotted relative specific viscosity (η/η0)
1/3

 versus the 

[GA]/[ct-DNA] in Fig. 6.3. The result illustrated an insignificant variation in the relative specific 

viscosity of ct-DNA in the presence of GA. Thus, groove binding mechanism was substantiated 

by the experiment. 

 

Figure 6.3. Viscosity measurement plot of ct-DNA (50 µM) with increasing concentration of 

GA 
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6.3.4. Circular dichroism (CD) experiments 

The far-UV CD spectra of DNA duplex in aqueous buffer display two bands, viz., positive band 

(~273-280 nm for a canonical B-form) and negative band (~245 nm, due to right handed helicity) 

[Bhowmik et al., Manna et al., 2012]. To determine the GA induced changes in the secondary 

structure of DNA, the intrinsic far-UV CD spectra of DNA was monitored in presence of 

increasing concentration of GA (Fig. 6.4). It is well-established in literature that both positive 

and negative bands of DNA duplex perturb remarkably during intercalative binding mode with 

small molecules. In contrast, the base stacking and helicity bands of DNA are not perturbed for 

groove binding [Yang et al., 2017; Manojkumar  et al., 2015]. In our case, addition of GA had an 

insignificant effect on the CD spectrum of ct-DNA which again supported the occurrence of 

groove binding mode in the interaction of GA with ct-DNA.    

 

Figure 6.4. Far-UV CD spectra of ct-DNA on the addition of varying concentration of GA 
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bright and intense fluorescence. Displacement of EB by a competing ligand will cause in the 

decrease of fluorescence intensity of DNA-EB complex which directly indicates about the 

intercalating nature of the competing ligand [Song et al., 2000; Lyles et al., 2002; Ramana et al., 

2016]. In the present study, GA was unable to decrease the fluorescence intensity of DNA-EB 

complex (vide Fig. 6.5) which again supported our previous findings of groove binding mode. 

 

Figure 6.5. Fluorescence emission spectra of native EB and EB-ct-DNA complex with 

increasing concentration of GA (0-140 µM) 
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non-intercalative binding, i.e., groove binding, a little or no significant change is observed in 

melting temperature (Tm) [Yasmeen et al., 2017]. The values of Tm for ct-DNA and GA-ct-DNA 

complex were obtained from Fig. 6.6 and the values were 62 °C and 63 °C respectively. The 

small change (1°C) in melting temperature indicated the occurance of groove binding between 

ct-DNA and GA.   

 

Figure 6.6. Thermal melting curve of free ct-DNA and GA-ct-DNA complex at pH 7.4 
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Figure 6.7. Fluorescence anisotropy plot of GA (30 µM) and ct-DNA (0-100 µM) 
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groove binding of GA is facilitated through the multiple hydrogen bonding with the base pairs 

(Table 6.1). The COOH groups can associate with two hydrogen bonds whereas one of the 

phenolic -OH groups can also form hydrogen bond with the nucleotide bases near it. This leads 

to the stabilization of the DNA-GA complex as seen from the appreciable binding affinity from 

experimental studies. Small increment in the fluorescence intensity of GA is mainly due to the 

enhanced binding and may be also due to the change in its planar structure (vide Section 6.3.1, 

Fig. 6.1) 

 

Figure 6.8. Molecular docking of GA with DNA: (A) GA binds at the groove of DNA as seen 

from the docked structure; (B) Possible hydrogen bonding between GA and base pairs of DNA; 

(C) Two different conformations of GA are shown superimposed over one another (GA1 shown 

in yellow: before docking and GA1 shown in blue: after docking) with RMSD value of 3.17 Å 
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Table 6.1. Hydrogen bnding distance between GA and nearby DNA bases pairs 

DNA residue GA atom Distance (in Å) 

Adenine (A5-N) OH (of COOH) 3.48 

Guanine (G4-NH2) C=O (of COOH) 3.47 

Thamine (T20-C=O) O-H (meta hydroxyl group) 2.72 

 

 

6.4. Conclusion  

In conclusion, we have investegated the binding mechanism of GA with ct-DNA via different 

biophysical techniques. GA was found to interact with ct-DNA through groove binding mode. 

The groove binding mode was confirmed from all the experimental observations. Molecular 

docking studies also suggested the involvement of groove binding between GA and ct-DNA with 

a favorable binding energy of -5.4 kcal/mol. Hydrogen bonding as well as van der Waal’s forces 

played a significant role in the binding of GA to ct-DNA.  
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