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A B S T R A C T   

Massif type charnockite was emplaced in the lower crust of the Eastern Ghats Province and is now exposed over a 
large geographic area. The rock shows clear evidence of magmatic emplacement in lower crustal metasedi
mentary rocks, which occur as enclaves within the charnockite. Textural data suggest the magma underwent 
subsolidus cooling and subsequently metamorphosed to granulite facies (up to ~ 910 ◦C, 9 kbar). Geochemical 
data show that the charnockite magma had variable chemistry which was acquired by differentiation and 
possible crustal contamination. The rock shows both high- and low-SiO2 types, with weakly peraluminous to 
metaluminous characters. Trace and REE fractionation trends suggest the magma had calcic to calc-alkaline 
affinities and was emplaced in a continental arc type collisional setting. Theoretical modelling suggests that 
such a magma could be generated by melting of a hydrated basaltic slab under CO2-rich fluid. U-Pb analysis on 
oscillatory zoned zircon domains from eight samples yields crystallization ages for the magma. While the ma
jority of the samples show crystallization ages within ca. 980–940 Ma (978 ± 16 Ma, 968 ± 22 Ma, 951 ± 9 Ma, 
954 ± 8 Ma, 951 ± 13 Ma and 939 ± 27 Ma), two samples yield crystallization ages of 1002 ± 13 Ma and 1020 
± 16 Ma. This implies two-phase emplacement of the charnockite magma which can be correlated with the 
tectonometamorphic evolution of the province. While the earlier pulse of charnockite magmatism is broadly 
synchronous with the first cycle (M1) of metamorphism, the later pulse followed when the lower crust was still 
hot. The two pulses of charnockite magmatism are broadly synchronous with those of the Mawson charnockite of 
the Rayner Province, East Antarctica. It is argued that the charnockite magmatism in the combined Rayner- 
Eastern Ghats Province was extensive and resulted from arc-continent accretion and collision between the 
India and East Antarctica during ca. 1030–900 Ma.   

1. Introduction 

Charnockite constitutes an integral part of regional granulite ter
ranes and igneous complexes and play crucial roles in formation and 
evolution of the Proterozoic crust (Duchesne and Wilmart, 1997). This 
rock has been variably classified by different names, but Frost and Frost 
(2008) brought all the orthopyroxene-bearing felsic rocks under the 
umbrella of charnockite. Magmatic charnockites are reported to be 
produced from differentiated magma generated from crustal (Duchesne 
et al., 1989; Hughes et al, 2004) or mantle (Emslie et al., 1994) sources 
having crystallization temperature > 900 ◦C (Kilpatrick and Ellis, 1992; 

Percival and Mortensen, 2002; Mendes and De Campos, 2012). The H2O- 
undersaturated charnockite magma shows broadly A-type granitic 
characters and such a magma can be formed in both divergent (Meshram 
et al., 2021), or convergent (Feio et al., 2012) tectonic settings. In most 
cases, these rocks represent crystallized arc magmas with minor crustal 
components (Yang and Santosh, 2015). These are volumetrically sig
nificant compared to those formed by metamorphic (Newton et al., 
1980) or anatectic (Bose et al., 2020) processes. Kilpatrick and Ellis 
(1992) coined the term C-type magma for this rock, but such exclusivity 
of the magma has been questioned when charnockite was found to occur 
in close proximity to S-type granites, indicating a genetic linkage 
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A B S T R A C T   

The tectonic evolution of the Rengali Province and its eventual juxtaposition to the Eastern Ghats Province has 
important bearings on the geological evolution of the Eastern Indian terrane. New zircon and monazite age data 
from the Rengali Province and the northern-northwestern part of the Eastern Ghats are presented in this study to 
trace this evolutionary history. Monazite U-Th-total Pb data from the paragneissic rocks of the eastern Rengali 
Province show a metamorphic age of 2775 ± 18 Ma while an older age of 2943 ± 35 Ma from the same rock 
probably suggests an older metamorphic/magmatic event. Zircon U-Pb (LA-ICPMS) data from the northern part 
of the Eastern Ghats show 1230 ± 21 Ma and 1220 ± 9 Ma ages that we interpret as a major phase of high-grade 
metamorphism of the basement. Paragneissic rocks from the northwestern margin of the Eastern Ghats yields 
monazite ages of 966 ± 21 Ma and 555 ± 12 Ma respectively from the core and rim parts of monazite grains. 
Similar ages of 966 ± 25 Ma and 540 ± 12 Ma are reported from paragneissic rock occurring at the contact of 
Rengali Province and the Eastern Ghats. This younger (~555–540 Ma) age likely correlates to the amphibolite 
facies reworking of the granulitic lower crust which coincides with the emplacement of nepheline syenite at 556 
± 28 Ma (zircon U-Pb data) and the contact metamorphism of the ultramafic granofels at 553 ± 18 Ma (monazite 
data). Nepheline monzosyenite veins intruded the gneissic nepheline syenite at 506 ± 9 Ma (zircon U-Pb data). 
Emplacement of the monzosyenite veins within the felsic gneiss country at the northwestern margin of the 
Eastern Ghats at 490 ± 3 Ma (zircon U-Pb data) marks the last thermal imprint in response to large-scale shear- 
induced deformation at the northern/northwestern contacts of the Eastern Ghats. We infer that the Neoarchean 
(ca. 2943–2775 Ma) events possibly resulted from the ensuing convergent tectonics driven by lithospheric 
peeling (peel-back convergent tectonics). The Eastern Ghats and its Antarctic counterpart juxtaposed with the 
Rengali Province during ca. 1000–900 Ma and become a part of the Eastern Indian terrane. The Ediacaran- 
Cambrian (ca. 556–490 Ma) events imply the reactivation of the deep crustal Tonian-age shear systems in a 
transpressional tectonic setting.   

1. Introduction 

The geological history of the Earth since its inception is etched in the 
rock records of cratons which are the only repositories of products of the 
early Earth processes (Condie and Pease, 2008; Cawood et al., 2013; 
Hawkesworth et al., 2017). Geological records suggest that cratonic 
cores formed mostly during the early-to-mid Archean eon (references as 

above) and subsequently modified by multiple cycles of magmatism, 
metamorphism, sedimentation, and deformation along their margins 
(Friend and Nutman, 2005; Windley and Gerde, 2009; Goscombe et al., 
2019). These processes eventually led to the growth of cratons that we 
see in their present configuration. Tectonics played a pivotal role in this 
evolutionary process in terms of crust-mantle coupling and decoupling. 
Although the debate on how and when the tectonic styles of the Earth 
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A B S T R A C T   

We present textural evidence of spinel (low-Zn) and quartz from two samples of quartzofeldspathic rocks from 
the Larsemann Hills, East Antarctica. The present occurrence is unusual for the fact that the direct grain contact is 
preserved unlike most other occurrences where these two phases are separated by reaction products during 
retrograde and/or prograde metamorphic stages. Textural features further indicate that Ti-biotite was part of the 
prograde assemblage that underwent partial melting to produce spinel. The maximum temperature estimated 
from the rock is 870 ◦C. Monazite grains are abundant in the rock and these are mostly homogeneous in terms of 
U, Th and Pb distribution. In situ U–Th-total Pb EPMA data of these monazite yield a group age of 527 ± 8 Ma. 
Textural and geochronological data match with the second (M2) stage of metamorphism of the Larsemann Hills 
region as evident from the existing geological record. Although spinel and quartz was considered to be a part of 
peak M2 assemblage in earlier studies, preservation of their grain contact is enigmatic. We consider the grain 
contact metastable and its preservation possibly resulted from significant overstepping of cooling reaction due to 
fast reaction kinetics.   

1. Introduction 

The occurrence of hercynitic spinel and quartz is a diagnostic feature 
of high temperature (>800 ◦C) mid-crustal metamorphism (Waters, 
1991). This association is reported from many regional and contact 
metamorphic zones where temperature exceeded 900 ◦C (Vielzeuf, 
1983; Dasgupta and Ehl, 1993; Mouri et al., 1996; Ouzegane and Bou
maza, 1996; Sandiford et al., 1987 among others). Decades later, it was 
understood that this assemblage could be treated as “suggestive” but not 
“diagnostic” feature of ultrahigh temperature (UHT) metamorphism 
(Harley, 2008; Kelsey, 2008; Kelsey and Hand, 2015). This is due to the 
fact that non-FMAS components like Zn, Cr, Ni, Ti, V, Fe+3 can signifi
cantly expand the stability field of the assemblage to lower temperature 
(Harley, 1986; Waters, 1991; Dasgupta et al., 1995; Guiraud et al., 
1996). Spinel and quartz can also occur metastably as Fe–Al spinel may 
exsolve out of a complex Fe–Al–Ti–Fe3+ spinel solid solution (Sandiford 
et al., 1987; Waters, 1991; Dasgupta et al., 1995). Despite these limi
tations, low-Zn and low-Fe+3 spinel in stable coexistence with quartz 
have been reported from several regional UHT terranes (Kawakami and 

Motoyoshi, 2004; Morimoto et al., 2004; Ouzegane and Boumaza, 
1996). In all other cases, spinel is separated by a corona comprising of 
various combinations of cordierite, sillimanite, sapphirine, orthopyr
oxene and garnet (Clarke et al., 1989; Perchuk et al., 1989; Stüwe and 
Powell, 1989; Waters, 1991; Dasgupta et al., 1995; Bose et al., 2000; 
Morimoto et al., 2004; Sajeev et al., 2006; Tsunogae and Santosh, 2006; 
Ganguly et al., 2017). 

In the present study, we present the petrogenetic reinterpretation of 
coexisting spinel and quartz in a quartzofeldspathic rocks from Larse
mann Hills, East Antarctica. We discuss the possible reason(s) for the 
coexistence of this mineral pair and implications. 

2. Geology of the Larsemann Hills 

The Larsemann Hills and adjoining areas surrounding Prydz Bay 
have been studied by many workers (Stüwe et al., 1989; Stüwe and 
Powell, 1989; Fitzsimons and Harley, 1991; Fitzsimons, 1996, 1997; 
Carson et al., 1997; Tong and Liu, 1997; Wang et al., 2008; Grew et al., 
2013; Tong et al., 2017 and references therein). The basement of the 
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Mafic granulites from key localities of the Eastern Ghats Province preserve Fe–Ti oxides, Cu–Fe sulphides
and traces of sulphate minerals along with silicate phases. Two different varieties of mafic granulite
exhibit slightly contrasting mineral assemblages. While the massive type of mafic granulite contains
minerals assemblage orthopyroxene + clinopyroxene + plagioclase + magnetite + ilmenite + pyrite +
pyrrhotite, the migmatitic variety contains garnet as an additional phase. Both oxide and sulphide
minerals show contrasting textural characters. Textural analysis and construed mineral reactions imply
that the variation of oxide–silicate, oxide–sulphide and sulphate relations is linked to variation of fO2

during the pre-peak, peak and post-peak stages of metamorphism. The calculated fO2 values range up
to +4 log units relative to the QFM (quartz-fayalite-magnetite) buffer among the samples, except for
one sample which shows lower values (−10 log units relative to the FMQ (fayalite-magnetite-quartz)
buffer). The consistently high fO2 condition at the lower crust could result from several factors, but the
role of the externally derived fluid appears to be plausible. Hot brine solution with CaCl2 species can
explain the oxidation as well as local metasomatism of the mafic lower crust even though its presence is
not verified from direct characterisation like fluid inclusion analysis.

Keywords. Mafic granulite; oxygen fugacity; brine solution; external fluid; Eastern Ghats Belt.

1. Introduction

Opaque minerals like Fe–Ti oxides, Cu–Fe sulphides
and graphite in granulite and amphibolite facies
rocks can provide information on both tempera-
ture conditions and oxygen fugacity of the deep
crust (Buddington and Lindsley 1964; Duchesne
1972; Bohlen and Essene 1977; Rollinson 1980;
Frost and Chacko 1989). Assemblages like fayalite–
magnetite–quartz, magnetite–haematite, orthopyr-
oxene–magnetite–quartz (Frost et al. 1988; Harlov

1992, 2000a; Harlov et al. 1997) and
pyrrhotite–pyrite–magnetite (Mohr and Newton
1983; Tracy and Robinson 1988; Cameron et al.
1993; Harlov et al. 1997; Harlov 2000b) are now
reliably utilised to constrain the fluid activity
during metamorphism. Compared to the oxide
phases, sulphide minerals have received relatively
less attention in granulite studies possibly due
to the vulnerability of these minerals to retro-
grade reactions and also partly due to the lack
of an established relationship between sulphide
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